Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 4 Sayı: 3, 271 - 280, 15.09.2017
https://doi.org/10.13069/jacodesmath.327377

Öz

Kaynakça

  • [1] A. Bernasconi, B. Codenotti, Spectral analysis of Boolean functions as a graph eigenvalue problem, IEEE Trans. Comput. 48(3) (1999) 345–351.
  • [2] A. Canteaut, C. Carlet, P. Charpin, C. Fontaine, On cryptographic properties of the cosets of $R(1,m)$, IEEE Trans. Inform. Theory 47(4) (2001) 1494–1513.
  • [3] A. Canteaut, P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory 49(8) (2003) 2004–2019.
  • [4] R. Craigen, Signed groups, sequences, and the asymptotic existence of Hadamard matrices, J. Combin. Theory Ser. A 71(2) (1995) 241–254.
  • [5] J. F. Dillon, Elementary Hadamard Difference Sets, PhD thesis, University of Maryland College Park, Ann Arbor, USA, 1974.
  • [6] A. V. Geramita, N. J. Pullman, A theorem of Hurwitz and Radon and orthogonal projective modules, Proc. Amer. Math. Soc. 42(1) (1974) 51–56.
  • [7] A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann. 88(1–2) (1922) 1–25.
  • [8] P. Leopardi, Classifying bent functions by their Cayley graphs, arXiv:1705.04507 [math.CO].
  • [9] P. Leopardi, A generalized FFT for Clifford algebras, Bull. Belg. Math. Soc. Simon Stevin 11(5) (2005) 663–688.
  • [10] P. Leopardi, Constructions for Hadamard matrices using Clifford algebras, and their relation to amicability / anti–amicability graphs, Australas. J. Combin. 58(2) (2014) 214–248.
  • [11] P. Leopardi, Twin Bent Functions and Clifford Algebras. In: Colbourn C. (eds) Algebraic Design Theory and HadamardMatrices. Springer Proceedings in Mathematics & Statistics, vol 133. Springer, Cham.
  • [12] P. Leopardi, Boolean–Cayley–graphs, (2016). http://tinyurl.com/Boolean-Cayley-graphs Sage- MathCloud public folder. Last accessed 16 April 2017.
  • [13] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1(1) (1922) 1–14.
  • [14] SageMath, Inc., SageMathCloud Online Computational Mathematics, (2016).
  • [15] N. Tokareva, On the number of bent functions from iterative constructions: lower bounds and hypotheses, Adv. Math. Commun. 5(4) (2011) 609–621.
  • [16] J. Williamson, Hadamard’s determinant theorem and the sum of four squares, Duke Math. J. 11(1) (1944) 65–81.
  • [17] P. Y. Yiu, Strongly regular graphs and Hurwitz–Radon numbers, Graphs and Combin. 6(1) (1990) 61–69.

Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory

Yıl 2017, Cilt: 4 Sayı: 3, 271 - 280, 15.09.2017
https://doi.org/10.13069/jacodesmath.327377

Öz

The real monomial representations of Clifford algebras
give rise to two sequences of bent functions.
For each of these sequences, the corresponding Cayley graphs are
strongly regular graphs, and the corresponding sequences of strongly regular graph parameters
coincide.
Even so, the corresponding graphs in the two sequences are not isomorphic, except in the first 3
cases.
The proof of this non-isomorphism is a simple consequence of a theorem of Radon.

Kaynakça

  • [1] A. Bernasconi, B. Codenotti, Spectral analysis of Boolean functions as a graph eigenvalue problem, IEEE Trans. Comput. 48(3) (1999) 345–351.
  • [2] A. Canteaut, C. Carlet, P. Charpin, C. Fontaine, On cryptographic properties of the cosets of $R(1,m)$, IEEE Trans. Inform. Theory 47(4) (2001) 1494–1513.
  • [3] A. Canteaut, P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory 49(8) (2003) 2004–2019.
  • [4] R. Craigen, Signed groups, sequences, and the asymptotic existence of Hadamard matrices, J. Combin. Theory Ser. A 71(2) (1995) 241–254.
  • [5] J. F. Dillon, Elementary Hadamard Difference Sets, PhD thesis, University of Maryland College Park, Ann Arbor, USA, 1974.
  • [6] A. V. Geramita, N. J. Pullman, A theorem of Hurwitz and Radon and orthogonal projective modules, Proc. Amer. Math. Soc. 42(1) (1974) 51–56.
  • [7] A. Hurwitz, Über die Komposition der quadratischen Formen, Math. Ann. 88(1–2) (1922) 1–25.
  • [8] P. Leopardi, Classifying bent functions by their Cayley graphs, arXiv:1705.04507 [math.CO].
  • [9] P. Leopardi, A generalized FFT for Clifford algebras, Bull. Belg. Math. Soc. Simon Stevin 11(5) (2005) 663–688.
  • [10] P. Leopardi, Constructions for Hadamard matrices using Clifford algebras, and their relation to amicability / anti–amicability graphs, Australas. J. Combin. 58(2) (2014) 214–248.
  • [11] P. Leopardi, Twin Bent Functions and Clifford Algebras. In: Colbourn C. (eds) Algebraic Design Theory and HadamardMatrices. Springer Proceedings in Mathematics & Statistics, vol 133. Springer, Cham.
  • [12] P. Leopardi, Boolean–Cayley–graphs, (2016). http://tinyurl.com/Boolean-Cayley-graphs Sage- MathCloud public folder. Last accessed 16 April 2017.
  • [13] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1(1) (1922) 1–14.
  • [14] SageMath, Inc., SageMathCloud Online Computational Mathematics, (2016).
  • [15] N. Tokareva, On the number of bent functions from iterative constructions: lower bounds and hypotheses, Adv. Math. Commun. 5(4) (2011) 609–621.
  • [16] J. Williamson, Hadamard’s determinant theorem and the sum of four squares, Duke Math. J. 11(1) (1944) 65–81.
  • [17] P. Y. Yiu, Strongly regular graphs and Hurwitz–Radon numbers, Graphs and Combin. 6(1) (1990) 61–69.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Paul Leopardi Bu kişi benim 0000-0003-2891-5969

Yayımlanma Tarihi 15 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 4 Sayı: 3

Kaynak Göster

APA Leopardi, P. (2017). Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(3), 271-280. https://doi.org/10.13069/jacodesmath.327377
AMA Leopardi P. Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory. Journal of Algebra Combinatorics Discrete Structures and Applications. Eylül 2017;4(3):271-280. doi:10.13069/jacodesmath.327377
Chicago Leopardi, Paul. “Twin Bent Functions, Strongly Regular Cayley Graphs, and Hurwitz-Radon Theory”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, sy. 3 (Eylül 2017): 271-80. https://doi.org/10.13069/jacodesmath.327377.
EndNote Leopardi P (01 Eylül 2017) Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory. Journal of Algebra Combinatorics Discrete Structures and Applications 4 3 271–280.
IEEE P. Leopardi, “Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 4, sy. 3, ss. 271–280, 2017, doi: 10.13069/jacodesmath.327377.
ISNAD Leopardi, Paul. “Twin Bent Functions, Strongly Regular Cayley Graphs, and Hurwitz-Radon Theory”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/3 (Eylül 2017), 271-280. https://doi.org/10.13069/jacodesmath.327377.
JAMA Leopardi P. Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:271–280.
MLA Leopardi, Paul. “Twin Bent Functions, Strongly Regular Cayley Graphs, and Hurwitz-Radon Theory”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 4, sy. 3, 2017, ss. 271-80, doi:10.13069/jacodesmath.327377.
Vancouver Leopardi P. Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(3):271-80.