Yıl 2018,
Cilt: 5 Sayı: 1, 29 - 43, 15.01.2018
Anna-Lena Horlemann-trautmann
Margreta Kuijper
Kaynakça
- [1] S. Abramov, M. Bronstein, Linear algebra for skew–polynomial matrices, Technical Report INRIA,
RR–4420, 2002.
- [2] W. W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, volume 3 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, 1994.
- [3] M. Ali, M. Kuijper, A parametric approach to list decoding of Reed–Solomon codes using interpolation,
IEEE Trans. Inform. Theory 57(10) (2011) 6718–6728.
- [4] B. Beckermann, H. Cheng, G. Labahn, Fraction–free row reduction of matrices of Ore polynomials,
J. Symbolic Comput. 41(5) (2006) 513–543.
- [5] D. A. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, volume 185 of Graduate Texts in Mathematics,
Springer, New York, second edition, 2005.
- [6] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory
Ser. A 25(3) (1978) 226–241.
- [7] P. Fitzpatrick, On the key equation, IEEE Trans. Inform. Theory 41(5) (1995) 1290–1302.
[8] G. D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable linear
systems, SIAM J. Control 13(3) (1975) 493–520.
- [9] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii,
21(1) (1985) 3–16.
- [10] E. M. Gabidulin, A fast matrix decoding algorithm for rank–error–correcting codes, In Algebraic
coding (Paris, 1991), Lecture Notes in Computer Science, 573 (1992) 126–133.
- [11] A. Kandri–Rody, V. Weispfenning, Noncommutative Gröbner bases in algebras of solvable type, J.
Symbolic Comput. 9(1) (1990) 1–26.
- [12] R. Koetter, F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE
Trans. Inform. Theory 54(8) (2008) 3579–3591.
- [13] M. Kuijper, K. Schindelar, Minimal Gröbner bases and the predictable leading monomial property,
Linear Algebra Appl. 434(1) (2011) 104–116.
- [14] M. Kuijper, A.–L. Trautmann, Iterative list–decoding of Gabidulin codes via Gröbner based interpolation,
In IEEE Information Theory Workshop (ITW 2014), Hobart, TAS, 2014, 581–585.
- [15] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, Second edition, Cambridge,
London, 1997.
- [16] P. Loidreau, A Welch–Berlekamp like algorithm for decoding Gabidulin codes, In Coding and cryptography,
Lecture Notes in Computer Science 3969 (2006) 36–45.
- [17] O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35(3) (1933) 559–584.
- [18] N. Raviv, A. Wachter–Zeh, Some Gabidulin codes cannot be list decoded efficiently at any radius,
IEEE Trans. Inform. Theory 62(4) (2016) 1605–1615.
- [19] G. Richter, S. Plass, Fast decoding of rank–codes with rank errors and column erasures, IEEE
International Symposium on Information Theory (ISIT) proceedings (2004) 398–398.
- [20] N. Silberstein, A. S. Rawat, S. Vishwanath, Error resilience in distributed storage via rank–metric
codes, In Fiftieth Annual Allerton conference, UIUC, Illinois, USA, (2012) 1150–1157.
- [21] D. Silva, F. R. Kschischang, Fast encoding and decoding of Gabidulin codes, IEEE International
Symposium on Information Theory (ISIT) proceedings (2009) 2858–2862.
- [22] D. Silva, F. R. Kschischang, On metrics for error correction in network coding, IEEE Trans. Inform.
Theory 55(12) (2009) 5479–5490.
- [23] D. Silva, F. R. Kschischang, R. Koetter, A rank–metric approach to error control in random network
coding, IEEE Trans. Inform. Theory 54(9) (2008) 3951 –3967.
- [24] A. Wachter–Zeh, Bounds on list decoding of rank–metric codes, IEEE Trans. Inform. Theory 59(11)
(2013) 7268–7277.
- [25] A. Wachter–Zeh, V. Afanassiev, V. Sidorenko, Fast decoding of Gabidulin codes, Des. Codes Cryptogr.
66(1–3) (2013) 57–73.
- [26] Y.Wu, New list decoding algorithms for Reed–Solomon and BCH codes, IEEE Trans. Inform. Theory
54(8) (2008) 3611–3630.
- [27] H. Xie, Z. Yan, B. W. Suter, General linearized polynomial interpolation and its applications, International
Symposium on Network Coding (NetCod) proceedings (2011) 1–4.
A module minimization approach to Gabidulin decoding via interpolation
Yıl 2018,
Cilt: 5 Sayı: 1, 29 - 43, 15.01.2018
Anna-Lena Horlemann-trautmann
Margreta Kuijper
Öz
We focus on iterative interpolation-based decoding of Gabidulin codes and present an algorithm that computes a minimal basis for an interpolation module.
We extend existing results for Reed-Solomon codes in showing that this minimal basis gives rise to a parametrization of elements in the module that lead to all Gabidulin decoding solutions that are at a fixed distance from the received word. Our module-theoretic approach strengthens the link between Gabidulin decoding and Reed-Solomon decoding, thus providing a basis for further work into Gabidulin list decoding.
Kaynakça
- [1] S. Abramov, M. Bronstein, Linear algebra for skew–polynomial matrices, Technical Report INRIA,
RR–4420, 2002.
- [2] W. W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, volume 3 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, 1994.
- [3] M. Ali, M. Kuijper, A parametric approach to list decoding of Reed–Solomon codes using interpolation,
IEEE Trans. Inform. Theory 57(10) (2011) 6718–6728.
- [4] B. Beckermann, H. Cheng, G. Labahn, Fraction–free row reduction of matrices of Ore polynomials,
J. Symbolic Comput. 41(5) (2006) 513–543.
- [5] D. A. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, volume 185 of Graduate Texts in Mathematics,
Springer, New York, second edition, 2005.
- [6] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory
Ser. A 25(3) (1978) 226–241.
- [7] P. Fitzpatrick, On the key equation, IEEE Trans. Inform. Theory 41(5) (1995) 1290–1302.
[8] G. D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable linear
systems, SIAM J. Control 13(3) (1975) 493–520.
- [9] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii,
21(1) (1985) 3–16.
- [10] E. M. Gabidulin, A fast matrix decoding algorithm for rank–error–correcting codes, In Algebraic
coding (Paris, 1991), Lecture Notes in Computer Science, 573 (1992) 126–133.
- [11] A. Kandri–Rody, V. Weispfenning, Noncommutative Gröbner bases in algebras of solvable type, J.
Symbolic Comput. 9(1) (1990) 1–26.
- [12] R. Koetter, F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE
Trans. Inform. Theory 54(8) (2008) 3579–3591.
- [13] M. Kuijper, K. Schindelar, Minimal Gröbner bases and the predictable leading monomial property,
Linear Algebra Appl. 434(1) (2011) 104–116.
- [14] M. Kuijper, A.–L. Trautmann, Iterative list–decoding of Gabidulin codes via Gröbner based interpolation,
In IEEE Information Theory Workshop (ITW 2014), Hobart, TAS, 2014, 581–585.
- [15] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, Second edition, Cambridge,
London, 1997.
- [16] P. Loidreau, A Welch–Berlekamp like algorithm for decoding Gabidulin codes, In Coding and cryptography,
Lecture Notes in Computer Science 3969 (2006) 36–45.
- [17] O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35(3) (1933) 559–584.
- [18] N. Raviv, A. Wachter–Zeh, Some Gabidulin codes cannot be list decoded efficiently at any radius,
IEEE Trans. Inform. Theory 62(4) (2016) 1605–1615.
- [19] G. Richter, S. Plass, Fast decoding of rank–codes with rank errors and column erasures, IEEE
International Symposium on Information Theory (ISIT) proceedings (2004) 398–398.
- [20] N. Silberstein, A. S. Rawat, S. Vishwanath, Error resilience in distributed storage via rank–metric
codes, In Fiftieth Annual Allerton conference, UIUC, Illinois, USA, (2012) 1150–1157.
- [21] D. Silva, F. R. Kschischang, Fast encoding and decoding of Gabidulin codes, IEEE International
Symposium on Information Theory (ISIT) proceedings (2009) 2858–2862.
- [22] D. Silva, F. R. Kschischang, On metrics for error correction in network coding, IEEE Trans. Inform.
Theory 55(12) (2009) 5479–5490.
- [23] D. Silva, F. R. Kschischang, R. Koetter, A rank–metric approach to error control in random network
coding, IEEE Trans. Inform. Theory 54(9) (2008) 3951 –3967.
- [24] A. Wachter–Zeh, Bounds on list decoding of rank–metric codes, IEEE Trans. Inform. Theory 59(11)
(2013) 7268–7277.
- [25] A. Wachter–Zeh, V. Afanassiev, V. Sidorenko, Fast decoding of Gabidulin codes, Des. Codes Cryptogr.
66(1–3) (2013) 57–73.
- [26] Y.Wu, New list decoding algorithms for Reed–Solomon and BCH codes, IEEE Trans. Inform. Theory
54(8) (2008) 3611–3630.
- [27] H. Xie, Z. Yan, B. W. Suter, General linearized polynomial interpolation and its applications, International
Symposium on Network Coding (NetCod) proceedings (2011) 1–4.