Let $\mathbb{F}_q$ be a finite field with $q$ elements and $n$ be a positive integer. In this paper, we determine the weight distribution of a class cyclic codes of length $2^n$ over $\mathbb{F}_q$ whose parity check polynomials are either binomials or trinomials with $2^l$ zeros over $\mathbb{F}_q$, where integer $l\ge 1$. In addition, constant weight and two-weight linear codes are constructed when $q\equiv3\pmod 4$.
Linear codes Reversible codes Weight distributions Constant weight codes
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 19 Ocak 2019 |
Yayımlandığı Sayı | Yıl 2019 Cilt: 6 Sayı: 1 |