Araştırma Makalesi
BibTex RIS Kaynak Göster

Trace forms of certain subfields of cyclotomic fields and applications

Yıl 2020, Cilt: 7 Sayı: 2, 141 - 160, 07.05.2020
https://doi.org/10.13069/jacodesmath.729440

Öz

In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained lattices are rotated versions of the lattices $ \Lambda_9, \Lambda_{10}$ and $\Lambda_{11}$ and they are images of $\mathbb{Z}$-submodules of rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are new in the literature. We also obtain algebraic lattices in odd dimensions up to $7$ over real subfields, calculate their minimum product distance and compare with those known in literatura, since lattices constructed over real subfields have full diversity.

Teşekkür

This work was supported by Fapesp 2013/25977-7 and CNPq 429346/2018-2.

Kaynakça

  • [1] A. A. Andrade, A. J. Ferrari, C. W. O. Benedito, Constructions of algebraic lattices, Comput. Appl. Math. 29(3) (2010) 1–13.
  • [2] E. Bayer–Fluckiger, Ideal lattices, Proceedings of the conference Number Theory and Diophantine Geometry (2002) 168–184.
  • [3] E. Bayer–Fluckiger, Lattices and number fields, Contemp. Math. 241 (1999) 69–84.
  • [4] E. Bayer–Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory 121(2) (2006) 305–323.
  • [5] E. Bayer–Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$–lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory 50(4) (2004) 702–714.
  • [6] E. Bayer–Fluckiger, G. Nebe, On the Euclidian minimum of some real number fields, Journal de Théorie des Nombres de Bordeaux 17(2) (2005) 437–454.
  • [7] E. Bayer–Fluckiger, I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. 86 (2006) 217–225.
  • [8] E. Bayer–Fluckiger, P. Maciak, Upper bounds for Euclidean minimal for abelian number fields of odd prime conductor, Math. Ann. 357 (2013) 1071–1089.
  • [9] W. Bosma, J. Cannon, C. Playoust, The magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997) 235–265.
  • [10] J. Boutros, E. Viterbo, C. Rastello, J. C. Belfiori, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory 42(2) (1996) 502–518.
  • [11] H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. 170(3) (2009) 1003–1050.
  • [12] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer–Verlag, New York 1998.
  • [13] A. J. Ferrari, A. A. Andrade, Constructions of rotated lattice constellations in dimensions power of 3, J. Algebra Appl. 17(09) (2017) 1850175.
  • [14] J. C. Interlando, T. P. N. Neto, T. M. Rodrigues, J. O. D. Lopes, A note on the integral trace form in cyclotomic fields, J. Algebra Appl. 14(04) (2015) 1550045.
  • [15] G. C. Jorge, A. A. Andrade, S. I. R. Costa, J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra 429 (2015) 218–235.
  • [16] G. C. Jorge, A. J. Ferrari, S. I. R. Costa, Rotated $D_n$–lattices, J. Number Theory 132(11) (2012) 2397–2406.
  • [17] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective, in Kluwer Internat. Ser. Engrg. Comput. Sci., Kluwer Academic Publishers 671 2002.
  • [18] F. Oggier, E. Bayer–Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, in Proceedings of IEEE International Symposium on Information Theory (2003).
  • [19] E. L. Oliveira, J. C. Interlando, T. P. N. Neto, J. O. D. Lopes, The integral trace form of cyclic extensions of odd prime degree, Rocky Mountain J. Math. 47(4) (2017) 1075–1088.
  • [20] P. Samuel, Algebraic Theory of Numbers, Hermann, 1982.
  • [21] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1995.
Yıl 2020, Cilt: 7 Sayı: 2, 141 - 160, 07.05.2020
https://doi.org/10.13069/jacodesmath.729440

Öz

Kaynakça

  • [1] A. A. Andrade, A. J. Ferrari, C. W. O. Benedito, Constructions of algebraic lattices, Comput. Appl. Math. 29(3) (2010) 1–13.
  • [2] E. Bayer–Fluckiger, Ideal lattices, Proceedings of the conference Number Theory and Diophantine Geometry (2002) 168–184.
  • [3] E. Bayer–Fluckiger, Lattices and number fields, Contemp. Math. 241 (1999) 69–84.
  • [4] E. Bayer–Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory 121(2) (2006) 305–323.
  • [5] E. Bayer–Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$–lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory 50(4) (2004) 702–714.
  • [6] E. Bayer–Fluckiger, G. Nebe, On the Euclidian minimum of some real number fields, Journal de Théorie des Nombres de Bordeaux 17(2) (2005) 437–454.
  • [7] E. Bayer–Fluckiger, I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. 86 (2006) 217–225.
  • [8] E. Bayer–Fluckiger, P. Maciak, Upper bounds for Euclidean minimal for abelian number fields of odd prime conductor, Math. Ann. 357 (2013) 1071–1089.
  • [9] W. Bosma, J. Cannon, C. Playoust, The magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997) 235–265.
  • [10] J. Boutros, E. Viterbo, C. Rastello, J. C. Belfiori, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory 42(2) (1996) 502–518.
  • [11] H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. 170(3) (2009) 1003–1050.
  • [12] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer–Verlag, New York 1998.
  • [13] A. J. Ferrari, A. A. Andrade, Constructions of rotated lattice constellations in dimensions power of 3, J. Algebra Appl. 17(09) (2017) 1850175.
  • [14] J. C. Interlando, T. P. N. Neto, T. M. Rodrigues, J. O. D. Lopes, A note on the integral trace form in cyclotomic fields, J. Algebra Appl. 14(04) (2015) 1550045.
  • [15] G. C. Jorge, A. A. Andrade, S. I. R. Costa, J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra 429 (2015) 218–235.
  • [16] G. C. Jorge, A. J. Ferrari, S. I. R. Costa, Rotated $D_n$–lattices, J. Number Theory 132(11) (2012) 2397–2406.
  • [17] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective, in Kluwer Internat. Ser. Engrg. Comput. Sci., Kluwer Academic Publishers 671 2002.
  • [18] F. Oggier, E. Bayer–Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, in Proceedings of IEEE International Symposium on Information Theory (2003).
  • [19] E. L. Oliveira, J. C. Interlando, T. P. N. Neto, J. O. D. Lopes, The integral trace form of cyclic extensions of odd prime degree, Rocky Mountain J. Math. 47(4) (2017) 1075–1088.
  • [20] P. Samuel, Algebraic Theory of Numbers, Hermann, 1982.
  • [21] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1995.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Agnaldo José Ferrarı Bu kişi benim 0000-0002-1422-1416

Antonio Aparecıdo De Andrade Bu kişi benim 0000-0001-6452-2236

Robson Rıcardo De Araujo Bu kişi benim 0000-0002-1357-9926

José Carmelo Interlando Bu kişi benim 0000-0003-4928-043X

Yayımlanma Tarihi 7 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

APA José Ferrarı, A., Aparecıdo De Andrade, A., Rıcardo De Araujo, R., Carmelo Interlando, J. (2020). Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications, 7(2), 141-160. https://doi.org/10.13069/jacodesmath.729440
AMA José Ferrarı A, Aparecıdo De Andrade A, Rıcardo De Araujo R, Carmelo Interlando J. Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications. Mayıs 2020;7(2):141-160. doi:10.13069/jacodesmath.729440
Chicago José Ferrarı, Agnaldo, Antonio Aparecıdo De Andrade, Robson Rıcardo De Araujo, ve José Carmelo Interlando. “Trace Forms of Certain Subfields of Cyclotomic Fields and Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications 7, sy. 2 (Mayıs 2020): 141-60. https://doi.org/10.13069/jacodesmath.729440.
EndNote José Ferrarı A, Aparecıdo De Andrade A, Rıcardo De Araujo R, Carmelo Interlando J (01 Mayıs 2020) Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications 7 2 141–160.
IEEE A. José Ferrarı, A. Aparecıdo De Andrade, R. Rıcardo De Araujo, ve J. Carmelo Interlando, “Trace forms of certain subfields of cyclotomic fields and applications”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 2, ss. 141–160, 2020, doi: 10.13069/jacodesmath.729440.
ISNAD José Ferrarı, Agnaldo vd. “Trace Forms of Certain Subfields of Cyclotomic Fields and Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications 7/2 (Mayıs 2020), 141-160. https://doi.org/10.13069/jacodesmath.729440.
JAMA José Ferrarı A, Aparecıdo De Andrade A, Rıcardo De Araujo R, Carmelo Interlando J. Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7:141–160.
MLA José Ferrarı, Agnaldo vd. “Trace Forms of Certain Subfields of Cyclotomic Fields and Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 2, 2020, ss. 141-60, doi:10.13069/jacodesmath.729440.
Vancouver José Ferrarı A, Aparecıdo De Andrade A, Rıcardo De Araujo R, Carmelo Interlando J. Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7(2):141-60.