Araştırma Makalesi
BibTex RIS Kaynak Göster

Growth of harmonic functions on biregular trees

Yıl 2022, Cilt: 9 Sayı: 2, 1 - 8, 13.05.2022
https://doi.org/10.13069/jacodesmath.1056555

Öz

On a biregular tree of degrees $q+1$ and $r+1$, we study the growth of two classes of harmonic functions. First, we prove that if $f$ is a bounded harmonic function on the tree and $x$, $y$ are two adjacent vertices, then $|f(x)-f(y)|\leq 2 (qr-1)\|f\|_\infty/((q+1)(r+1))$, thus generalizing a result of Cohen and Colonna for regular trees. Next, we prove that if $f$ is a positive harmonic function on the tree and $x$, $y$ are two vertices with $d(x,y)=2$, then $f(x)/(qr)\leq f(y)\leq qr\cdot f(x)$.

Kaynakça

  • [1] V. Anandam, Harmonic functions and potentials on finite and infinite networks, Springer, Heidelberg, Bologna (2011).
  • [2] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, New York (2001).
  • [3] N. L. Biggs, Discrete mathematics, Clarendon Press, Oxford University Press, New York (1985).
  • [4] P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math. 9 (1972) 203–270.
  • [5] J. M. Cohen, F. Colonna, The Bloch space of a homogeneous tree, Bol. Soc. Mat. Mex. 37 (1992) 63–82.
  • [6] E. Nelson, A proof of Liouville’s theorem, Proc. Amer. Math. Soc. 12(6) (1961) 995.
  • [7] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press (2000).
Yıl 2022, Cilt: 9 Sayı: 2, 1 - 8, 13.05.2022
https://doi.org/10.13069/jacodesmath.1056555

Öz

Kaynakça

  • [1] V. Anandam, Harmonic functions and potentials on finite and infinite networks, Springer, Heidelberg, Bologna (2011).
  • [2] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, New York (2001).
  • [3] N. L. Biggs, Discrete mathematics, Clarendon Press, Oxford University Press, New York (1985).
  • [4] P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math. 9 (1972) 203–270.
  • [5] J. M. Cohen, F. Colonna, The Bloch space of a homogeneous tree, Bol. Soc. Mat. Mex. 37 (1992) 63–82.
  • [6] E. Nelson, A proof of Liouville’s theorem, Proc. Amer. Math. Soc. 12(6) (1961) 995.
  • [7] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press (2000).
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Francisco Javier Gonzalez Vieli Bu kişi benim

Yayımlanma Tarihi 13 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

APA Gonzalez Vieli, F. J. (2022). Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications, 9(2), 1-8. https://doi.org/10.13069/jacodesmath.1056555
AMA Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. Mayıs 2022;9(2):1-8. doi:10.13069/jacodesmath.1056555
Chicago Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications 9, sy. 2 (Mayıs 2022): 1-8. https://doi.org/10.13069/jacodesmath.1056555.
EndNote Gonzalez Vieli FJ (01 Mayıs 2022) Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications 9 2 1–8.
IEEE F. J. Gonzalez Vieli, “Growth of harmonic functions on biregular trees”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 9, sy. 2, ss. 1–8, 2022, doi: 10.13069/jacodesmath.1056555.
ISNAD Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications 9/2 (Mayıs 2022), 1-8. https://doi.org/10.13069/jacodesmath.1056555.
JAMA Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. 2022;9:1–8.
MLA Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 9, sy. 2, 2022, ss. 1-8, doi:10.13069/jacodesmath.1056555.
Vancouver Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. 2022;9(2):1-8.