On a biregular tree of degrees $q+1$ and $r+1$, we study the growth of two classes of harmonic functions. First, we prove that if $f$ is a bounded harmonic function on the tree and $x$, $y$ are two adjacent vertices, then $|f(x)-f(y)|\leq 2 (qr-1)\|f\|_\infty/((q+1)(r+1))$, thus generalizing a result of Cohen and Colonna for regular trees. Next, we prove that if $f$ is a positive harmonic function on the tree and $x$, $y$ are two vertices with $d(x,y)=2$, then $f(x)/(qr)\leq f(y)\leq qr\cdot f(x)$.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 13 Mayıs 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 9 Sayı: 2 |