Research Article
BibTex RIS Cite
Year 2022, , 648 - 659, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.20

Abstract

Supporting Institution

Erciyes Üniversitesi Bilimsel Araştırma Projeler Koordinatürlüğü

Project Number

FDK-2021-10629

References

  • Albacete, A., MartÍnez-AndÚjar, C., Ghanem, M. E., Acosta, M., SÁnchez-Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., & PÉrez-Alfocea, F. (2009). Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32(7), 928–938. https://doi.org/10.1111/J.1365-3040.2009.01973.X
  • Alexopoulos, A. A., Kondylis, Angelos., & Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. International Journal of Food, Agriculture and Environment, 5, 178–179.
  • Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae, 127(2), 119–126. https://doi.org/10.1016/J.SCIENTA.2010.09.003
  • Aslam, A., Zhao, S., Azam, M., Lu, X., He, N., Li, B., Dou, J., Zhu, H., & Liu, W. (2020). Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. PeerJ, 8, e8259. Aydın, A., Yetişir, H., Başak, H., Güngör, R., Şengöz, S., & Çetin, A. N. (2022). Investigation of appropriate grafting method and plant applications to increase grafting success in cucumber. International Journal of Agriculture, Environment and Food Sciences, 6(2), 275–284. https://doi.org/10.31015/jaefs.2022.2.11
  • Chung, Y.-L., Kuo, Y.-T., & Wu, W.-L. (2017). Development of SSR markers in Phalaenopsis orchids, their characterization, cross-transferability and application for identification. In Orchid biotechnology III (pp. 91–107). World Scientific.
  • Corneillie, S., de Storme, N., van Acker, R., Fangel, J. U., de Bruyne, M., de Rycke, R., Geelen, D., Willats, W. G. T., Vanholme, B., & Boerjan, W. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiology, 179(1), 74–87.
  • Cushman, K. E., & Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: Yield and fruit quality under commercial growing conditions. Acta Horticulturae, 782, 335–341. https://doi.org/10.17660/ACTAHORTIC.2008.782.42
  • del Pozo, J. C., & Ramirez‐Parra, E. (2014). Deciphering the molecular bases for drought tolerance in A rabidopsis autotetraploids. Plant, Cell & Environment, 37(12), 2722–2737.
  • Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A. v, Nagy, B., Sass, L., Ferenc, G., Vankova, R., & Dobrev, P. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiology, 170(3), 1504–1523.
  • Edelstein, M., Plaut, Z., & Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1), 177–184. https://doi.org/10.1093/jxb/erq255
  • Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., & Cohen, R. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Scientia Horticulturae, 165, 196–202. https://doi.org/10.1016/J.SCIENTA.2013.11.010 Fernández-García, M., & Martínez-Arbelaiz, A. (2002). Negotiation of meaning in nonnative speaker-nonnative speaker synchronous discussions. Calico Journal, 279–294.
  • Fredes, A., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-De-Castro, A., Gisbert, C., & Belén Picó, M. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 97(5), 1646–1655. https://doi.org/10.1002/jsfa.7915
  • Głowacka, K., Jeżowski, S., & Kaczmarek, Z. (2010). In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Industrial Crops and Products, 32(2), 88–96.
  • Gregory, P. J., Atkinson, C. J., Bengough, A. G., Else, M. A., Fernández-Fernández, F., Harrison, R. J., & Schmidt, S. (2013).
  • Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany, 64(5), 1209–1222. https://doi.org/10.1093/JXB/ERS385
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit).
  • Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M., & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149, 80–85. https://doi.org/10.1016/J.SCIENTA.2012.02.009
  • Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M., Xie, J., Muhammad Azher Nawaz, & Bie, Z. (2016). Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Horticultural Plant Journal, 2(2), 105–113. https://doi.org/10.1016/J.HPJ.2016.06.003
  • Kaseb, M., Umer, M. J., Gebremeskel, H., Mahmud, E., Diao, W., Yuan, P., Zhu, H., Zhao, S., Lu, X., & He, N. (2020). Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Watermelon (Citrullus lanatus L.) Grafted by Branches. Preprints (Www.Preprints.Org). https://doi.org/10.20944
  • Kasmiyati, S., Kristiani, E. B. E., & Herawati, M. M. (2020). Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education, 12(1), 90–96. Kim, Y.-S., Hahn, E.-J., Murthy, H. N., & Paek, K.-Y. (2004). Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. Journal of Plant Biology, 47(4), 356–360.
  • Kovalev, P. A. (1990). Pleiotropic effects of the genes s and yg6 and formation of the inflorescence in tomato. Izvestiya Akademii Nauk Moldavskoĭ SSR. Biologicheskie i Khimicheskie Nauki, 5, 34–36.
  • Kovalev, P. A., & Lisovskaya, T. P. (1989). Pleiotropic effects of gene Bl and the formation of the inflorescence in tomato (Lycopersicon esculentum Mill.). Izvestiya Akademii Nauk Moldavskoi SSR. Biologicheskie i Khimicheskie Nauki, 3, 69–71.
  • Lee, J.-M., & Oda, M. (2010). Grafting of Herbaceous Vegetable and Ornamental Crops. Horticultural Reviews, 61–124. https://doi.org/10.1002/9780470650851.CH2
  • Levi, A., Thies, J. A., Wechter, P. W., Farnham, M., Weng, Y., & Hassell, R. (2014). USVL-360, a Novel Watermelon Tetraploid Germplasm Line. HortScience, 49(3), 354–357. https://doi.org/10.21273/HORTSCI.49.3.354
  • Liu, N., Yang, J., Fu, X., Zhang, L., Tang, K., Malangisha Guy, K., Hu, Z., Guo, S., Xu, Y., & Zhang, M. (2016). Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Molecular Genetics and Genomics, 291, 621–633. https://doi.org/10.1007/s00438-015-1132-5
  • Li, X., Yu, E., Fan, C., Zhang, C., Fu, T., & Zhou, Y. (2012). Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta, 236(2), 579–596.
  • Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science, 7(OCTOBER2016), 1457. https://doi.org/10.3389/FPLS.2016.01457/BIBTEX
  • Nisini, P. T., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93(3–4), 281–288.
  • Oda, M. (2002). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, Volume 28, 28, 61. Perkins-Veazie, P., Collins, J. K., Davis, A. R., & Roberts, W. (2006). Carotenoid Content of 50 Watermelon Cultivars. Journal of Agricultural and Food Chemistry, 54(7), 2593–2597. https://doi.org/10.1021/jf052066p
  • Ra, S. W., Yang, J. S., Ham, I. K., Moon, C. S., Woo, I. S., Hong, Y. K., & Roh, T. H. (1995). Effect of remaining potato stems on yield in grafting plants between mini-tomato and potato. RDA Journal of Agricultural Science (Korea Republic), 37(2), 390–393. Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1, 70–74.
  • Romero, L., Belakbir, A., Ragala, L., & Ruiz, J. M. (1997). Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition, 43(4), 855–862. https://doi.org/10.1080/00380768.1997.10414652
  • Sakata, Y., Ohara, T., & Sugiyama, M. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticulturae, 731, 159–170. https://doi.org/10.17660/ACTAHORTIC.2007.731.22
  • Schwarz, D., Öztekin, G. B., Tüzel, Y., Brückner, B., & Krumbein, A. (2013). Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae, 149, 70–79. https://doi.org/10.1016/J.SCIENTA.2012.06.013
  • Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. https://doi.org/10.1016/J.SCIENTA.2010.09.016
  • Shimada, N., & Nakamura, K. (1977). Plant nutritional studies on the grafting of the garden crops. i. nutrient absorption by the grafted plants (watermelon, bottle gourd) from the culture solutions of several nutrient levels. Nippon Dojohiryogaku Zasshi. Journal of the Science of Soil and Manure, Japan.
  • Ulas, A., Doganci, E., Ulas, F., & Yetisir, H. (2019). Root-growth Characteristics Contributing to Genotypic Variation in Nitrogen Efficiency of Bottle Gourd and Rootstock Potential for Watermelon. PLANTS-BASEL, 8(3). https://doi.org/10.3390/PLANTS8030077
  • Uygur, V., & Yetisir, H. (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of Plant Nutrition, 32(4), 629–643. https://doi.org/10.1080/01904160802715448
  • W. production. (2022). Faostat,. https://www.fao.org/faostat/en/#data/QCL
  • Yarşi, G., & Sari, N. (2006). Aşılı fide kullanımının sera kavun yetiştiriciliğinde beslenme durumuna etkisi. Alatarım, 5(2), 1–8.
  • Yetişir, H., Kurt, fiener, Sari, N., & Tok, F. M. (2007). Rootstock Potential of Turkish Lagenaria siceraria Germplasm for Watermelon: Plant Growth, Graft Compatibility, and Resistance to Fusarium. Turk J Agric For, 31, 381–388.
  • Yetisir, H., Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013a). Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. https://doi.org/10.4236/AS.2013.45033
  • Yetisir, H., Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013b). Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. https://doi.org/10.4236/AS.2013.45033
  • Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43(10), 1269–1274.
  • Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Zeng, H., Ren, J., Li, Y., & Xiong, J. (2019). Efficient characterization of tetraploid watermelon. Plants, 8(10), 419.

Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics

Year 2022, , 648 - 659, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.20

Abstract

The emergence of some physiological and fruit quality problems due to the common squash rootstocks used in watermelon has led researchers to search for alternative rootstocks sources. Exploitation of novel Citrullus germplasm such as citronmelon (Citrullus lanatus var. citroides) is an alternative to avoid these problems. In this study, rootstocks potential of auto and allotetraploid citrullus genotypes for watermelon were investigated as regard to plant growth and some physiological parameters under hyroponic conditions. Plant length was significantly affected by rootstock genotype and the longest plant stem was measured in watermelon plants grafted on N7-4T tetraploid rootstock (62.67 cm) while the shortest stem was measured in grafted plants onto autotetraploid Calhounn Gray with 14.33 cm. Among the graft combinations, N7-4T/CT (93.33 g) and CN7-5T/CT 95.00 g) graft combination produced the highest shoot fresh and dry weight. As in shoot fresh weight, the exploitationted on to tetraploid rootstock produced higher root fresh and dry weight than the plants grafted on diploid rootstocks and commercial rootstock. The highest root fresh and dry weight were determined in the plants grafted on to autotetraploid N5-4T and allotetraploid CN7-5T. Root characteristics were significantly affected by rootstock genotypes. The N, P, K and Ca contents of the leaves of the CT watermelon cultivar grafted on different rootstocks were significantly affected by the rootstocks. This study showed that citrullus tetraploid genotypes (auto and allo) to be produced by polyploidy method can be an important alternative rootstock source for watermelon.

Project Number

FDK-2021-10629

References

  • Albacete, A., MartÍnez-AndÚjar, C., Ghanem, M. E., Acosta, M., SÁnchez-Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., & PÉrez-Alfocea, F. (2009). Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32(7), 928–938. https://doi.org/10.1111/J.1365-3040.2009.01973.X
  • Alexopoulos, A. A., Kondylis, Angelos., & Passam, H. C. (2007). Fruit yield and quality of watermelon in relation to grafting. International Journal of Food, Agriculture and Environment, 5, 178–179.
  • Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae, 127(2), 119–126. https://doi.org/10.1016/J.SCIENTA.2010.09.003
  • Aslam, A., Zhao, S., Azam, M., Lu, X., He, N., Li, B., Dou, J., Zhu, H., & Liu, W. (2020). Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. PeerJ, 8, e8259. Aydın, A., Yetişir, H., Başak, H., Güngör, R., Şengöz, S., & Çetin, A. N. (2022). Investigation of appropriate grafting method and plant applications to increase grafting success in cucumber. International Journal of Agriculture, Environment and Food Sciences, 6(2), 275–284. https://doi.org/10.31015/jaefs.2022.2.11
  • Chung, Y.-L., Kuo, Y.-T., & Wu, W.-L. (2017). Development of SSR markers in Phalaenopsis orchids, their characterization, cross-transferability and application for identification. In Orchid biotechnology III (pp. 91–107). World Scientific.
  • Corneillie, S., de Storme, N., van Acker, R., Fangel, J. U., de Bruyne, M., de Rycke, R., Geelen, D., Willats, W. G. T., Vanholme, B., & Boerjan, W. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiology, 179(1), 74–87.
  • Cushman, K. E., & Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: Yield and fruit quality under commercial growing conditions. Acta Horticulturae, 782, 335–341. https://doi.org/10.17660/ACTAHORTIC.2008.782.42
  • del Pozo, J. C., & Ramirez‐Parra, E. (2014). Deciphering the molecular bases for drought tolerance in A rabidopsis autotetraploids. Plant, Cell & Environment, 37(12), 2722–2737.
  • Dudits, D., Török, K., Cseri, A., Paul, K., Nagy, A. v, Nagy, B., Sass, L., Ferenc, G., Vankova, R., & Dobrev, P. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiology, 170(3), 1504–1523.
  • Edelstein, M., Plaut, Z., & Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1), 177–184. https://doi.org/10.1093/jxb/erq255
  • Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A., Tadmor, Y., & Cohen, R. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Scientia Horticulturae, 165, 196–202. https://doi.org/10.1016/J.SCIENTA.2013.11.010 Fernández-García, M., & Martínez-Arbelaiz, A. (2002). Negotiation of meaning in nonnative speaker-nonnative speaker synchronous discussions. Calico Journal, 279–294.
  • Fredes, A., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-De-Castro, A., Gisbert, C., & Belén Picó, M. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 97(5), 1646–1655. https://doi.org/10.1002/jsfa.7915
  • Głowacka, K., Jeżowski, S., & Kaczmarek, Z. (2010). In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Industrial Crops and Products, 32(2), 88–96.
  • Gregory, P. J., Atkinson, C. J., Bengough, A. G., Else, M. A., Fernández-Fernández, F., Harrison, R. J., & Schmidt, S. (2013).
  • Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany, 64(5), 1209–1222. https://doi.org/10.1093/JXB/ERS385
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit).
  • Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M., & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149, 80–85. https://doi.org/10.1016/J.SCIENTA.2012.02.009
  • Huang, Y., Zhao, L., Kong, Q., Cheng, F., Niu, M., Xie, J., Muhammad Azher Nawaz, & Bie, Z. (2016). Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Horticultural Plant Journal, 2(2), 105–113. https://doi.org/10.1016/J.HPJ.2016.06.003
  • Kaseb, M., Umer, M. J., Gebremeskel, H., Mahmud, E., Diao, W., Yuan, P., Zhu, H., Zhao, S., Lu, X., & He, N. (2020). Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Watermelon (Citrullus lanatus L.) Grafted by Branches. Preprints (Www.Preprints.Org). https://doi.org/10.20944
  • Kasmiyati, S., Kristiani, E. B. E., & Herawati, M. M. (2020). Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education, 12(1), 90–96. Kim, Y.-S., Hahn, E.-J., Murthy, H. N., & Paek, K.-Y. (2004). Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. Journal of Plant Biology, 47(4), 356–360.
  • Kovalev, P. A. (1990). Pleiotropic effects of the genes s and yg6 and formation of the inflorescence in tomato. Izvestiya Akademii Nauk Moldavskoĭ SSR. Biologicheskie i Khimicheskie Nauki, 5, 34–36.
  • Kovalev, P. A., & Lisovskaya, T. P. (1989). Pleiotropic effects of gene Bl and the formation of the inflorescence in tomato (Lycopersicon esculentum Mill.). Izvestiya Akademii Nauk Moldavskoi SSR. Biologicheskie i Khimicheskie Nauki, 3, 69–71.
  • Lee, J.-M., & Oda, M. (2010). Grafting of Herbaceous Vegetable and Ornamental Crops. Horticultural Reviews, 61–124. https://doi.org/10.1002/9780470650851.CH2
  • Levi, A., Thies, J. A., Wechter, P. W., Farnham, M., Weng, Y., & Hassell, R. (2014). USVL-360, a Novel Watermelon Tetraploid Germplasm Line. HortScience, 49(3), 354–357. https://doi.org/10.21273/HORTSCI.49.3.354
  • Liu, N., Yang, J., Fu, X., Zhang, L., Tang, K., Malangisha Guy, K., Hu, Z., Guo, S., Xu, Y., & Zhang, M. (2016). Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Molecular Genetics and Genomics, 291, 621–633. https://doi.org/10.1007/s00438-015-1132-5
  • Li, X., Yu, E., Fan, C., Zhang, C., Fu, T., & Zhou, Y. (2012). Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta, 236(2), 579–596.
  • Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science, 7(OCTOBER2016), 1457. https://doi.org/10.3389/FPLS.2016.01457/BIBTEX
  • Nisini, P. T., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccardo, F. (2002). Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93(3–4), 281–288.
  • Oda, M. (2002). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, Volume 28, 28, 61. Perkins-Veazie, P., Collins, J. K., Davis, A. R., & Roberts, W. (2006). Carotenoid Content of 50 Watermelon Cultivars. Journal of Agricultural and Food Chemistry, 54(7), 2593–2597. https://doi.org/10.1021/jf052066p
  • Ra, S. W., Yang, J. S., Ham, I. K., Moon, C. S., Woo, I. S., Hong, Y. K., & Roh, T. H. (1995). Effect of remaining potato stems on yield in grafting plants between mini-tomato and potato. RDA Journal of Agricultural Science (Korea Republic), 37(2), 390–393. Rivero, R. M., Ruiz, J. M., & Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1, 70–74.
  • Romero, L., Belakbir, A., Ragala, L., & Ruiz, J. M. (1997). Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition, 43(4), 855–862. https://doi.org/10.1080/00380768.1997.10414652
  • Sakata, Y., Ohara, T., & Sugiyama, M. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticulturae, 731, 159–170. https://doi.org/10.17660/ACTAHORTIC.2007.731.22
  • Schwarz, D., Öztekin, G. B., Tüzel, Y., Brückner, B., & Krumbein, A. (2013). Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae, 149, 70–79. https://doi.org/10.1016/J.SCIENTA.2012.06.013
  • Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. https://doi.org/10.1016/J.SCIENTA.2010.09.016
  • Shimada, N., & Nakamura, K. (1977). Plant nutritional studies on the grafting of the garden crops. i. nutrient absorption by the grafted plants (watermelon, bottle gourd) from the culture solutions of several nutrient levels. Nippon Dojohiryogaku Zasshi. Journal of the Science of Soil and Manure, Japan.
  • Ulas, A., Doganci, E., Ulas, F., & Yetisir, H. (2019). Root-growth Characteristics Contributing to Genotypic Variation in Nitrogen Efficiency of Bottle Gourd and Rootstock Potential for Watermelon. PLANTS-BASEL, 8(3). https://doi.org/10.3390/PLANTS8030077
  • Uygur, V., & Yetisir, H. (2009). Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. Journal of Plant Nutrition, 32(4), 629–643. https://doi.org/10.1080/01904160802715448
  • W. production. (2022). Faostat,. https://www.fao.org/faostat/en/#data/QCL
  • Yarşi, G., & Sari, N. (2006). Aşılı fide kullanımının sera kavun yetiştiriciliğinde beslenme durumuna etkisi. Alatarım, 5(2), 1–8.
  • Yetişir, H., Kurt, fiener, Sari, N., & Tok, F. M. (2007). Rootstock Potential of Turkish Lagenaria siceraria Germplasm for Watermelon: Plant Growth, Graft Compatibility, and Resistance to Fusarium. Turk J Agric For, 31, 381–388.
  • Yetisir, H., Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013a). Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. https://doi.org/10.4236/AS.2013.45033
  • Yetisir, H., Özdemir, A. E., Aras, V., Candır, E., & Aslan, Ö. (2013b). Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agricultural Sciences, 2013(05), 230–237. https://doi.org/10.4236/AS.2013.45033
  • Yetisir, H., & Sari, N. (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43(10), 1269–1274.
  • Zhang, N., Bao, Y., Xie, Z., Huang, X., Sun, Y., Feng, G., Zeng, H., Ren, J., Li, Y., & Xiong, J. (2019). Efficient characterization of tetraploid watermelon. Plants, 8(10), 419.
There are 44 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Research Articles
Authors

Alim Aydın 0000-0002-9424-5556

Halit Yetişir 0000-0001-6955-9513

Hakan Başak 0000-0002-1128-4059

Metin Turan 0000-0002-4849-7680

Metin Tuna 0000-0003-4841-8871

Project Number FDK-2021-10629
Publication Date December 30, 2022
Submission Date October 16, 2022
Acceptance Date November 8, 2022
Published in Issue Year 2022

Cite

APA Aydın, A., Yetişir, H., Başak, H., Turan, M., et al. (2022). Rootstock potential of auto and Allotetraploid Citron [Citrullus lanatus var. citroides (L. H. Bailey) Mansf.] for Watermelon [Citrullus lanatus var lanatus (Thunb.) Matsum. & Nakai] under hydroponic conditions: plant growth and some physiological characteristics. International Journal of Agriculture Environment and Food Sciences, 6(4), 648-659. https://doi.org/10.31015/jaefs.2022.4.20


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27