This study focuses on the use of deep learning and machine learning models to forecast cow cheese production in Turkey. In particular, our research utilizes the LSTM (long short-term memory) model to forecast cow cheese production for the next 12 months by extensively utilizing deep learning and machine learning techniques that have not been applied in this field before. In addition to LSTM, models such as GRU (Gated Recurrent Unit), MLP (Multi-Layer Perceptron), SVR (Support Vector Regression), and KNN (K-Nearest Neighbors) were also tested, and their performances were compared using RMSE (Root Mean Square Error), MSE (Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and (Coefficient of Determination) metrics. The findings revealed that the LSTM model performed significantly better than the other models in terms of RMSE, MSE, MAE, and MAPE values. This result indicates that the LSTM model provides high accuracy and reliability in forecasting cow cheese production. This achievement of the model offers important applications in areas such as supply chain management, inventory optimization, and demand forecasting in the dairy industry.
Deep Learning Machine Learning LSTM Cow Cheese Production Futurue Prediction
Birincil Dil | İngilizce |
---|---|
Konular | Hayvansal Üretim (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 11 Haziran 2024 |
Yayımlanma Tarihi | 27 Haziran 2024 |
Gönderilme Tarihi | 16 Kasım 2023 |
Kabul Tarihi | 25 Mayıs 2024 |
Yayımlandığı Sayı | Yıl 2024 |
International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar.
Web: dergipark.org.tr/jaefs E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27