Research Article
BibTex RIS Cite

The Effect of Humic Acid Application on Drought Tolerance of Miscanthus (Miscanthus × giganteus)

Year 2025, Volume: 9 Issue: 4, 1181 - 1190, 26.12.2025
https://doi.org/10.31015/2025.4.20

Abstract

Drought is one of the most critical environmental factors limiting plant growth, development, and productivity. This study was conducted to evaluate the drought tolerance effects of humic acid (HA) under different irrigation regimes (100% irrigation (C, control), 75% (D1), 50% (D2), 25% (D3), and 0% irrigation (D4)) in Miscanthus × giganteus. The experiment was carried out in plastic pots under greenhouse conditions for 58 days. Reduced irrigation levels negatively affected plant growth to varying degrees, with declines ranging from 3% to 86% compared with the control in parameters such as plant height, stem diameter, leaf width, leaf number and area, and fresh and dry weights of leaves, stems, and roots. Application of HA improved plant resistance to drought, reducing growth losses to 7–45% relative to the control and providing an average improvement of 8–34% compared with plants without HA treatment. Similarly, physiological traits, including leaf relative water content (RWC), leaf water potential (LWP), membrane injury index (MII), and chlorophyll content, were reduced by 1–278% under limited irrigation compared with the control. HA treatments had positive effects on these physiological parameters, leading to an average reduction of 9–61% compared to the control group and an average improvement of 11–33% compared to untreated plants. Overall, the findings demonstrate that humic acid effectively enhances drought tolerance in Miscanthus by alleviating the adverse effects of water deficit stress.

References

  • Abobatta, W. F. (2019). Drought adaptive mechanisms of plants–A review. Advances in Agriculture and Environmental Science, 2(1), 62–65. https://doi.org/10.30881/aaeoa.00022
  • Abu-Ria, M. E., Elghareeb, E. M., Shukry, W. M., Abo-Hamed, S. A., & Ibraheem, F. (2024). Mitigation of drought stress in maize and sorghum by humic acid: Differential growth and physiological responses. BMC Plant Biology, 24(1), 514. https://doi.org/10.1186/s12870-024-05184-4
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy., 7(18), 1–38. https://doi.org/10.3390/agronomy7010018
  • AgrioLaben Food and Agricultural Laboratory Services Industry and Trade Co. Ltd. (2020). Magic Leon Leonardite fertilizer analysis report (Report No. GB-20-2660). Prepared for ORGANIKSA Agricultural Industry and Trade Inc., Bandırma, Turkey. Unpublished laboratory report, TÜRKAK accredited laboratory No. AB-0437-T.
  • Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy. 4, 848621. https://doi.org/10.3389/fagro.2022.848621
  • Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(69), 1–12. https://doi.org/10.3389/fpls.2017.00069
  • Bashir, S. S., Hussain, A., Hussain, S. J., Wani, O. A., Zahid Nabi, S., Dar, N. A., & Mansoor, S. (2021). Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotechnology & Biotechnological Equipment, 35(1), 1912-1925. https://doi.org/10.1080/13102818.2021.2020161
  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5. https://doi.org/10.12688/f1000research.7678.1
  • Castillo, P., Escalante, M., Gallardo, M., Alemano, S., & Abdala, G. (2013). Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiologiae Plantarum, 35(7), 2299-2309. https://doi.org/10.1007/s11738-013-1267-0
  • de Souza, G. A., Baroni, D. F., Bernado, W. D. P., Santos, A. R., Barcellos, L. C. D. S., Barcelos, L. F., Correia, L.Z., de Almeida, C.M., Verdin Filho, A.C., Rodrigues, W.P., Ramolho, J.C, Rakocevic, M., & Campostrini, E. (2025). Leaf to root morphological and anatomical indicators of drought resistance in coffea canephora after two stress cycles. Agriculture; Basel, 15(6). https://doi.org/10.3390/ agriculture15060574
  • Deepak, S. B., Thakur, A., Singh, S., Bakshi, M., & Bansal, S. (2019). Changes in crop physiology under drought stress: A review. Journal of Pharmacognosy and Phytochemistry, 8, 1251–1253
  • Dirie, K. A., Maamor, S., & Alam, M. M. (2024). Impacts of climate change in post-conflict Somalia: Is the 2030 Agenda for SDGs endangered? World Development Perspectives, 35, 100598. https://doi.org/10.1016/j.wdp.2024.100598
  • Dlugokecka, E., & Kacperska-Palacz, A. (1978). Re-examination of electrical conductivity method for estimation of drought injuries. Biologia Plantarum, 20(4), 262–267. https://doi.org/10.1007/BF02922681
  • Fan, S., & Blake, T. J. (1997). Comparison of polyethylene glycol 3350 induced osmotic stress and soil drying for drought simulation in three woody species. Trees, 11(6), 342-348. https://doi.org/10.1007/s004680050094
  • Heaton, E., Voigt, T., & Long, S. P. (2004). A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy, 27, 21–30. https://doi.org/10.1016/j.biombioe.2003.10.005
  • Ibrahim, E. A., Ebrahim, N. E., & Mohamed, G. Z. (2024). Mitigation of water stress in broccoli by soil application of humic acid. Scientific Reports, 14(1), 2765. https://doi.org/10.1038/s41598-024-53012–4
  • Haghpanah, M., Hashemipetroudi, S., Arzani, A., & Araniti, F. (2024). Drought tolerance in plants: physiological and molecular responses. Plants, 13(21), 2962. https://doi.org/10.3390/plants13212962
  • Hatami, H. (2017). The effect of zinc and humic acid applications on yield and yield components of sunflower in drought stress. Journal of Advanced Agricultural Technologies, 4(1), 36–39.
  • Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M. and Al-Juburi, H. J., Somasundaram, R. A. and Panneerselvam, R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11(1), 100–105.
  • Khan, A. A., Wang, Y. F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, 1547452. https://doi.org/10.3389/fpls.2025.1547452
  • Khodadadi, S., Chegini, M. A., Soltani, A., Ajam Norouzi, H., & Sadeghzadeh Hemayati, S. (2020). Influence of foliar-applied humic acid and some key growth regulators on sugar beet (Beta vulgaris L.) under drought stress: Antioxidant defense system, photosynthetic characteristics and sugar yield. Sugar Tech, 22, 765–772. https://doi.org/10.1007/s12355-020-00839-6
  • Kıran, S., Özkay, F., Kuşvuran, Ş., & Ellialtıoğlu, Ş. (2014). The effect of humic acid applications on some morphological, physiological and biochemical characteristics of eggplants irrigated with water contained heavy metals in high concentration. Turkish Journal of Agriculture - Food Science and Technology, 2(6), 280–288. https://doi.org/10.24925/turjaf.v2i6.280-288.158
  • Kiran, S., Furtana, G. B., Talhouni, M., & Ellialtıoglu, S. S. (2019). Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia, 78, 490–497. https://doi.org/10.1590/1678-4499.20190057
  • Köksal, E. S., Üstün, H., & İlbeyi, A. (2010). Threshold values of leaf water potential and crop water stress index as an indicator of irrigation time for dwarf green beans. Journal of Agricultural Faculty of Uludag University, 24(1), 25–36
  • Kusvuran, S, Dasgan H. Y., & Abak, K. (2011). Responses of different melon genotypes to drought stress. Yüzüncü Yıl University, Journal Agriculture Science, 21(3), 209–219.
  • Kusvuran, A., & Kusvuran, S. (2019). Using of microbial fertilizer as biostimulant alleviates damage from drought stress in guar (Cyamopsis tetragonoloba (L.) Taub.) seedlings. International Letters Natural Science, 76, 147–157. https://doi.org/10.56431/p-x0z5sx
  • Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003a). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy, 25, 335–361. https://doi.org/10.1016/S0961-9534(03)00030-8
  • Lewandowski, I., Clifton-Brown, J. C., Andersson, B., Basch, G., Christian, D. G., Jørgensen, U., Jones, M. B., Riche, A. B., Schwarz, K. U., Tayebi, K., & Teixeira, F. (2003b). Environment and harvest time affects the combustion qualities of miscanthus genotypes. Journal Agronomy, 95, 1274–1280. https://doi.org/10.2134/agronj2003.1274
  • Li, Z., Tan, X., Lu, K., Zhang, L., Long, H., & Lv, J. (2017). Effects of drought stress on growth, gas exchange and chlorophyll fluorescence parameters of two species of tung oil. Journal of Ecology, 37, 1515–1524.
  • Nazli, R. I, Kusvuran, A., Inal, I., Demirbas, A., & Tansi, V. (2014). Effects of different organic materials on forage yield and quality of silage maize (Zea mays L.). Turkish Journal of Agriculture and Forestry, 38, 23–31. https://doi.org/10.3906/tar-1302-62
  • Okunlola, G. O., Olatunji, O. A., Akinwale, R. O., Tariq, A., & Adelusi, A. A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198–205. https://doi.org/10.1016/j.scienta.2017.06.020
  • Sánchez, F. J., Andres, E. F., TenorIo, J. L., & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 86, 81–90. https://doi.org/10.1016/S0378-4290(03)00121-7
  • Schröder, F. G., & Lieth, J. H. (2002). Irrigation control in hydroponics. In: Savvas D, Passam P (Eds) Hydroponic production of vegetables and ornamentals. Embryo Publications. Athens, Greece, 263–269.
  • Shen, J., Guo, M. J., Wang, Y. G., Yuan, X. Y., Wen, Y. Y., Song, X. E., & Guo, P. Y. (2020). Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signaling & Behavior, 15(8), 1774212.
  • Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Differantial responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. Acutifolius gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediates water stress. Plant Science, 168, 223–231. https://doi.org/10.1016/j.plantsci.2004.07.032
  • Yang, F., Tang, C. & Antonietti, M. (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical Society Reviews, 50, 6221–6239. https://doi.org/10.1039/D0CS01363C
  • Wang, S., Zhou, H., He, Z., Ma, D., Sun, W., Xu, X., & Tian, Q. (2024). Effects of drought stress on leaf functional traits and biomass characteristics of Atriplex canescens. Plants, 13(14). https://doi.org/10.3390/plants13142006
  • Zahedi, S. M., Karimi, M., Venditti, A., Zahra, N., Siddique, K. H., & Farooq, M. (2025). Plant adaptation to drought stress: The role of anatomical and morphological characteristics in maintaining the water status. Journal of Soil Science and Plant Nutrition, 25(1), 409–427. https://doi.org/10.1007/s42729-024-02141-w
  • Zhang, L., Gao, M., Zhang, L., Li, B., Han, M., Alva, A. K., & Ashraf, M. (2013). Role of exogenous glycinebetaine and humic acid in mitigating drought stress-induced adverse effects in Malus robusta seedlings. Turkish Journal of Botany, 37, 920–929. https://doi.org/10.3906/bot-1212-21
There are 39 citations in total.

Details

Primary Language English
Subjects Fertilisers and Application
Journal Section Research Article
Authors

Serkan Yıldız 0000-0002-6342-069X

Alpaslan Kusvuran 0000-0002-5252-6261

Şebnem Kuşvuran 0000-0002-1270-6962

Submission Date October 13, 2025
Acceptance Date December 6, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Yıldız, S., Kusvuran, A., & Kuşvuran, Ş. (2025). The Effect of Humic Acid Application on Drought Tolerance of Miscanthus (Miscanthus × giganteus). International Journal of Agriculture Environment and Food Sciences, 9(4), 1181-1190. https://doi.org/10.31015/2025.4.20

Abstracting & Indexing Services



© International Journal of Agriculture, Environment and Food Sciences

All content published in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Authors retain copyright of their work and grant the journal a non-exclusive right to publish, reproduce, and distribute the articles within an open-access framework.

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone / WhatsApp: +90 850 309 59 27


TRDizinlogo_live-e1586763957746.png  ADP_cert_2026.png CABI.png