Assessment of Water Stress in Mung Bean (Vigna radiata (L.) Wilczek) by Infrared Thermometry and Its Relationship with Irrigation Scheduling and Yield Performance
Year 2025,
Volume: 9 Issue: 4, 1394 - 1404, 26.12.2025
Sertan Sesveren
,
Süleyman Köksal
,
Mehmet Engizek
Abstract
This study was conducted during the 2018 growing season in Kahramanmaraş Province, Türkiye, to determine the response of mung bean (Vigna radiata (L.) Wilczek) to water stress under different irrigation strategies and seed densities using a drip irrigation system. Along with mung bean yield (Y), the potential use of Crop Water Stress Index (CWSI) in irrigation scheduling was also investigated. Three different seed densities; D1 = 2 kg/da, D2 = 3 kg/da and D3 = 4 kg/da were tested in combination with four irrigation treatments: full irrigation (FI), deficit irrigations (DI50 and DI75), and partial root-zone drying (PRD50). The experimental design was a randomized complete block design with three replications arranged in split plots. During the experimental period, canopy temperature measurements were taken for all treatments using an infrared thermometer, and CWSI values were calculated based on canopy–air temperature differences (Tc–Ta) and vapor pressure deficit (VPD). Hourly measurements throughout the day were used to establish the upper (UL) and lower (LL) baselines, with VPD values ranging from 1.67 to 3.30 kPa. The LL equation was determined as:(Tc−Ta)LL= −3.9283×VPD+2.1424; R2=0.87. CWSI values obtained for the tested treatments ranged between 0.00 and 0.77. The highest pre-irrigation CWSI value (0.30) observed in the FI-D3 treatment where the lowest CWSI values were subsequently recorded can be used as a threshold to initiate irrigation. A linear negative relationship was found between Y and CWSI, expressed by the equation:Y= −393.95×CWSI+863.22; R2=0.75. The results demonstrated that irrigation scheduling for mung bean can be effectively developed based on CWSI values.
Supporting Institution
Kahramanmaras Sutcu Imam University
Project Number
2018/7-39 M
Thanks
Thanks to the Scientific Research Projects Coordination Unit of Kahramanmaraş Sütçü İmam University Rectorate for their support.
References
-
Aladenola, O., & Madramootoo, C. (2012). Effect of different water application on yield and water use of bell pepper under greenhouse conditions. In NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference (pp. 1–8). Northeast Agricultural & Biological Engineering Conference, Canadian Society for Bioengineering, Lakehead University, Orillia, Ontario.
-
Alderfasi, A. A., & Nielsen, D. C. (2001). Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 47(1), 69–75. https://doi.org/10.1016/S0378-3774(00)00106-0
-
Allahmoradi, P., Ghobadi, M., & Taherabadi, S. (2011). Physiological aspects of mungbean (Vigna radiata L.) in response to drought stress. International Conference on Food Engineering and Biotechnology (Vol. 9, pp. 1–4). IACSIT Press, Singapore.
-
Alves, I., & Pereira, L. S. (2000). Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrigation Science, 19, 101–106. https://doi.org/10.1007/s002710050002
-
Ambachew, E., Alamirew, T., & Melese, A. (2014). Performance of mungbean under deficit irrigation application in the semi-arid highlands of Ethiopia. Agricultural Water Management, 136, 68–74. https://doi.org/10.1016/j.agwat.2014.01.012
-
Argyrokastritis, I. G., Papastylianou, P. T., & Alexandris, S. (2015). Leaf water potential and crop water stress index variation for full and deficit irrigated cotton in Mediterranean conditions. Agriculture and Agricultural Science Procedia, 4, 463–470. https://doi.org/10.1016/j.aaspro.2015.03.053
-
Arıtürk, M. E. (2008). Planning the irrigation time of second crop silage maize and determination of water-yield quality relationships [Master’s thesis, Namık Kemal University].
-
Baydemir, F. (2013). Farklı sıra aralığı ve fosfor dozlarının maş fasulyesinde [Vigna radiata (L.) Wilczek] verim ve bazı verim unsurları üzerine etkisi [Yüksek lisans tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü].
-
Ben-Gal, A., Agam, N., Alchanatis, V., Cohen, Y., Yermiyahu, U., Zipori, I., Presnov, E., Sprintsin, M., & Dag, A. (2009). Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery. Irrigation Science, 27(5), 367–376. https://doi.org/10.1007/s00271-008-0142-z
-
Bozkurt Çolak, Y., Yazar, A., Çolak, İ., Akça, H., & Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and Agricultural Science Procedia, 4C, 372–382. https://doi.org/10.1016/j.aaspro.2015.03.041
-
Bozkurt Çolak, Y., Yazar, A., Sesveren, S., & Çolak, İ. (2017). Evaluation of yield and leaf water potential (LWP) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Scientia Horticulturae, 219, 10–21. https://doi.org/10.1016/j.scienta.2017.02.010
-
Bozkurt Çolak, Y. (2021). Leaf water potential for surface and subsurface drip irrigated bell pepper under various deficit irrigation strategies. Chilean Journal of Agricultural Research, 81(4), 491–506. https://doi.org/10.4067/S0718-58392021000400491
-
Bozkurt Çolak, Y., Yazar, A., Yıldız, M., Tekin, S., Gönen, E., & Alghawry, A. (2023). Assessment of crop water stress index and net benefit for surface- and subsurface-drip irrigated bell pepper to various deficit irrigation strategies. The Journal of Agricultural Science, 161(2), 254–271. https://doi.org/10.1017/S0021859623000205
-
Gönen, E., Bozkurt Çolak, Y., Ozfidaner, M., Yazar, A., & Tanriverdi, Ç. (2024). Eco-physiological response of grain amaranth to regulated deficit and conventional deficit irrigation applied with surface and subsurface drip irrigation systems. The Journal of Agricultural Science, 162(5), 482–496. doi:10.1017/S0021859624000480
-
Carlson, R. E., Yarger, D. N., & Shaw, R. H. (1972). Environmental influences on the leaf temperatures of two soybean varieties grown under controlled irrigation. Agronomy Journal, 64(2), 224–229. https://doi.org/10.2134/agronj1972.00021962006400020021x
-
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to whole plant. Functional Plant Biology, 30, 239–264. https://doi.org/10.1071/FP02076
-
Cohen, Y., Alchanatis, V., Saranga, Y., Rosenberg, O., Sela, E., & Bosak, A. (2017). Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields. Precision Agriculture, 18, 801–822. https://doi.org/10.1007/s11119-016-9491-6
-
Costa, J. M., Ortuño, M. F., & Chaves, M. M. (2007). Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49(10), 1421–1434. https://doi.org/10.1111/j.1672-9072.2007.00556.x
-
De Costa, W. A. J. M., & Shanmugathasan, K. N. (1999). Effects of irrigation at different growth stages on vegetative growth of mung bean (Vigna radiata L. Wilczek) in dry and intermediate zones of Sri Lanka. Journal of Agronomy and Crop Science, 183, 111–117. https://doi.org/10.1046/j.1439-037x.1999.00326.x
-
English, M., & Raja, S. N. (1996). Perspectives on deficit irrigation. Agricultural Water Management, 32(1), 1–14. https://doi.org/10.1016/S0378-3774(96)01255-3
-
Erdem, Y., Sehirali, S., Erdem, T., & Kenar, D. (2006). Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turkish Journal of Agriculture and Forestry, 30, 195–202.
-
Erdem, Y., Arin, L., Erdem, T., Polat, S., Deveci, M., Okursoy, H., & Gültaş, H. (2010). Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Management, 98(1), 148–156. https://doi.org/10.1016/j.agwat.2010.08.010
-
Fereres, E., Francisco, O., & Victoria, G. D. (2011). Reflections on food security under water scarcity. Journal of Experimental Botany, 62(12), 4079–4086. https://doi.org/10.1093/jxb/err165
-
Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159. https://doi.org/10.1093/jxb/erl165
-
Geiser, K. M., Slack, D. C., Allred, E. R., & Stange, K. W. (1982). Irrigation scheduling using crop canopy-air temperature difference. Transactions of the ASAE, 25(3), 689–694. https://doi.org/10.13031/2013.33654
-
Gençoğlan, C., & Yazar, A. (1999). Çukurova koşullarında yetiştirilen I. ürün mısır bitkisinde infrared termometre değerlerinden yararlanılarak bitki su stresi indeksi (CWSI) ve sulama zamanının belirlenmesi. Turkish Journal of Agriculture and Forestry, 23, 87–95.
-
Gölgül, İ. (2019). Farklı sulama suyu seviyelerinin maş fasulyesi verimi üzerine etkisi ve bitki su stres indeksinin sulama programlamasında kullanılma olanakları [Yüksek lisans tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü].
-
Gonzalez-Dugo, V., Testi, L., Villalobos, F. J., López-Bernal, A., Orgaz, F., Zarco-Tejada, P. J., & Fereres, E. (2020). Empirical validation of the relationship between the crop water stress index and relative transpiration in almond trees. Agricultural and Forest Meteorology, 292–293, 108128. https://doi.org/10.1016/j.agrformet.2020.108128
-
Han, M., Zhang, H., DeJonge, K. C., Comas, L. H., & Gleason, S. (2018). Comparison of three crop water stress index models with sap flow measurements in maize. Agricultural Water Management, 203, 366–375. https://doi.org/10.1016/j.agwat.2018.03.018
-
Horst, G. L., O’Toole, J. C., & Faver, K. L. (1989). Seasonal and species variation in baseline functions for determining crop water stress indices in turfgrass. Crop Science, 29(5), 1227–1232. https://doi.org/10.2135/cropsci1989.0011183X002900050035x
-
Howell, T. A., Cuenca, R. H., & Solomon, K. H. (1990). Crop yield response. In G. J. Hoffman et al. (Eds.), Management of farm irrigation systems (pp. 312–333). ASAE.
-
Idso, S. B., Jackson, R. D., Pinter, P. J., Jr., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress degree day parameter for environmental variability. Agricultural Meteorology, 24, 45–55. https://doi.org/10.1016/0002-1571(81)90032-7
-
Gölgül, İ., Kırnak, H., & İrik, H. A. (2023). Yield components and crop water stress index (CWSI) of mung bean grown under deficit irrigations. Gesunde Pflanzen, 75, 271–281. https://doi.org/10.1007/s10343-022-00698-z
-
Irmak, S., Haman, D. Z., & Baştuğ, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92(6), 1221–1227. https://doi.org/10.2134/agronj2000.9261221x
-
Jackson, R. D. (1982). Canopy temperature and crop water stress. In D. Hillel (Ed.), Advances in irrigation (Vol. 1, pp. 43–85). Academic Press.
-
Jackson, R. D., Reginato, R. J., & Idso, S. B. (1977). Wheat canopy temperature: A practical tool for evaluating crop water requirements. Water Resources Research, 13(3), 651–656. https://doi.org/10.1029/WR013i003p00651
-
Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J., Jr. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17(4), 1133–1138. https://doi.org/10.1029/WR017i004p01133
-
Karaata, H. (1985). Harran Ovasında pamuk su tüketimi araştırması. K.H.G. Müdürlüğü, Şanlıurfa Araştırma Enstitüsü Yayınları, 24, 15–36.
-
Katimbo, A., Rudnick, D. R., DeJonge, K. C., Lo, T. H., Qiao, X., Franz, T. E., Nakabuye, H. N., & Duan, J. (2022). Crop water stress index computation approaches and their sensitivity to soil water dynamics. Agricultural Water Management, 266, 107575. https://doi.org/10.1016/j.agwat.2022.107575
-
Keller, J., & Bliesner, R. D. (1990). Sprinkle and trickle irrigation. Chapman and Hall.
-
Keten Gökkuş, M., & Değirmenci, H. (2023). Comparison of water–yield relations, water deficit index, and crop water stress index in silage maize (Zea mays L.) and sorghum (Sorghum bicolor L.). Journal of Agricultural Science and Technology, 25(6), 1403–1415. https://doi.org/10.22034/jast.25.6.1403
-
Kirnak, H., İrik, H. A., & Ünlükara, A. (2019). Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Scientia Horticulturae, 256, 108608. https://doi.org/10.1016/j.scienta.2019.108608
-
Marsal, J., Mata, M., Arbones, A., Del Campo, J., Girona, J., & Lopez, G. (2008). Factors involved in alleviating water stress by partial crop removal in pear trees. Tree Physiology, 28(9), 1375–1382. https://doi.org/10.1093/treephys/28.9.1375
-
Massai, R., Remorini, D., & Casula, F. (2000). Leaf temperature measured on peach trees growing in different climatic and soil water conditions. Acta Horticulturae, 537, 399–406. https://doi.org/10.17660/ActaHortic.2000.537.47
-
Ödemiş, B., & Baştuğ, R. (1999). Infrared termometre tekniği kullanılarak pamukta bitki sustresinin değerlendirilmesi ve sulamaların programlanması. Turkish Journal of Agriculture and Forestry, 23(1), 31–37.
-
Payero, J. O., Neale, C. M. U., & Wright, J. L. (2005). Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass. Transactions of the ASAE, 48(2), 653–661. https://doi.org/10.13031/2013.18341
-
Pouyafard, N., Akkuzu, E., & Kaya, Ü. (2016). Determination of some physiologic and morphologic changes of young olive (cv. Ayvalık) trees under different water stress in coastal part of Aegean Region. Journal of Tekirdağ Agricultural Faculty, 13, 88–98.
-
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (Agriculture Handbook No. 60). U.S. Department of Agriculture.
-
Sezen, S. M., Yazar, A., & Tekin, S. (2019). Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Scientia Horticulturae, 245, 280–288. https://doi.org/10.1016/j.scienta.2018.10.053
-
Steele, D. D., Stegman, E. C., & Gregor, B. L. (1994). Field comparison of irrigation scheduling methods for corn. Transactions of the ASAE, 37(4), 1197–1203. https://doi.org/10.13031/2013.28143
-
Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates.
-
Tüzüner, A. (1990). Toprak ve su analiz laboratuvarları el kitabı. T.C. Tarım Orman ve Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
-
Uçak, A. B., & Gençoğlan, C. (2013). The effect of direct and traditional seeding methods and different water levels on the water–yield relationship of drip irrigated corn. Journal of Food, Agriculture and Environment, 11(3–4), 828–833.
-
Ülgen, N., & Yurtsever, N. (1995). Türkiye gübre ve gübreleme rehberi (Genel Yayın No: 209, Teknik Yayınlar No: T.66). Toprak ve Gübre Araştırma Enstitüsü Yayınları, Ankara.
-
White, S., & Raine, S. R. (2008). A grower guide to plant-based sensing for irrigation scheduling (Publication No. 1001574/6). National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba, QLD, Australia.
-
Yazar, A., Howell, T. A., Dusek, D. A., & Copeland, K. S. (1999). Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science, 18(4), 171–180. https://doi.org/10.1007/s002710050058
-
Yazar, A., İnce Kaya, C., Sezen, S. M., & Jacobsen, S. E. (2015). Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science, 66(10), 993–1002. https://doi.org/10.1071/CP15055
-
Yazar, A. (2009). Sulama ve drenaj ders notları. Çukurova Üniversitesi Ziraat Fakültesi, Tarımsal Yapılar ve Sulama Bölümü, Adana.
-
Yıldırım, O. (2008). Sulama sistemlerinin tasarımı. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 1565, Ankara.
-
Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182, 106019. https://doi.org/10.1016/j.compag.2021.106019
-
Zia, S., Spohrer, K., Du, W., Spreer, W., Romano, G., He, X., & Müller, J. (2011). Monitoring physiological responses to water stress in two maize varieties by infrared thermography. International Journal of Agricultural and Biological Engineering, 4(1), 1–9.
-
Zipoli, G. (1990). Remote sensing for scheduling irrigation: Review of thermal infrared approach. Acta Horticulturae, 1, 281–288. https://doi.org/10.17660/ActaHortic.1990.1.38