Research Article
BibTex RIS Cite

Combined Effects of Biochar and Seaweed Extract on Soil Nutrient Dynamics and Physiological Responses of Arugula under Saline Irrigation

Year 2025, Volume: 9 Issue: 4, 1169 - 1180, 26.12.2025
https://doi.org/10.31015/2025.4.19

Abstract

Soil salinity severely limits crop productivity by disrupting plant physiology and nutrient balance. This study examined the effects of biochar and seaweed extract on soil properties, nutrient uptake, and physiological responses of arugula (Eruca sativa Mill.) under saline irrigation. A factorial experiment was conducted with two salinity levels (S0: tap water, 0.6 dS m⁻¹; S1: 3.1 dS m⁻¹ saline water), two biochar rates (B0: %0 biochar, B1: 2% biochar application), and two seaweed extract doses (SW0: no seaweed, SW1: 0.65 ml L⁻¹). Salinity significantly reduced chlorophyll (SPAD) and leaf relative water content (LRWC) while increasing electrolyte leakage (EL). Seaweed extract increased SPAD by 17%, LRWC by 7%, and reduced EL by 18%. Although the short-term physiological effects of biochar were limited, it improved nutrient balance, particularly for Ca, Mg, and Cu. Correlation analysis revealed strong positive relationships between soil and plant nutrient content and negative correlations between soil Na and plant Zn. The combined use of biochar and seaweed extract improved soil-plant interactions and reduced salt-induced stress. These findings indicate that integrating biochar and seaweed extract is an effective and sustainable strategy for enhancing the resilience and productivity of arugula under saline conditions.

References

  • Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. https://doi.org/10.1016/j.apsoil.2017.06.008
  • Ahmad, M., Usman, A. R., Al-Faraj, A. S., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339. https://doi.org/10.1016/j.chemosphere.2017.11.156
  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201(5), 368-378. https://doi.org/10.1111/jac.12132
  • Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531
  • Allohverdi, T., Mohanty, A.K., Roy, P., Misra, M. (2021). A review on current status of biochar uses in agriculture. Molecules, 26, 5584. https://doi.org/10.3390/molecules26185584
  • Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability, 13(3), 1330. https://doi.org/10.3390/su13031330 Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11(8), 1096. https://doi.org/10.3390/biom11081096
  • Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://doi.org/10.1016/j.scienta.2015.09.012
  • Bhupenchandra, I., Chongtham, S. K., Devi, E. L., Choudhary, A. K., Salam, M. D., Sahoo, M. R., ... & Khaba, C. I. (2022). Role of biostimulants in mitigating the effects of climate change on crop performance. Frontiers in Plant Science, 13, 967665. https://doi.org/10.3389/fpls.2022.967665
  • Cakmakci, T., Cakmakci, O., & Sahin, U. (2022). The effect of biochar amendment on physiological and biochemical properties and nutrient content of lettuce in saline water irrigation conditions. Turkish Journal of Agriculture-Food Science and Technology, 10(12), 2560-2570. https://doi.org/10.24925/turjaf.v10i12.2560-2570.5653
  • Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393-404. https://doi.org/10.1080/03650340.2013.789870
  • Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. https://doi.org/10.1007/s10811-010-9560-4
  • Çakmakcı, Ö. (2025). The Impact of Seaweed Application on Some Growth and Physiological Parameters and Nutrient Uptake in Arugula Under Deficit Irrigation Conditions. Journal of Agricultural Production, 6(3), 177-185. https://doi.org/10.56430/japro.1751290
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., ... & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2), 36. https://doi.org/10.1007/s13593-016-0372-z
  • Edenborn S L, Edenborn HM, Krynock RM, Haug KZ. 2015. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acidtar. Journal of Environmental Management, 150:226-234. https://doi.org/10.1016/j.jenvman.2014.11.023
  • El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359
  • Gee G. W., Bauder J. W. (1986). Particle-size analysis. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods (Klute A., ed.). Agronomy Society of America and Soil Science Society America, Madison, WI. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Guo L.L., Yu H.W., Kharbach, M., Zhang W, Wang, J.W., Niu, W.Q. (2021). Biochar improves soil-tomato plant, tomato production, and economic benefits under reduced nitrogen application in northwestern China. Plants, 10,759. https://doi.org/10.3390/plants10040759
  • Gush, L., Shah, S., & Gilani, F. (2021). Macronutrients and micronutrients. In A prescription for healthy living (pp. 255-273). Academic Press. https://doi.org/10.1016/B978-0-12-821573-9.00023-0
  • Hafeez, A., Pan T., Tian, J., Cai, K. (2022). Modified biochars and their effects on soil quality: A review. Environments, 9,60. https://doi.org/10.3390/environments9050060
  • Hasanuzzaman, M., Fujita, M. (2022). Plant responses and tolerance to salt stress: physiological and molecular interventions. International Journal of Molecular Sciences, 23(9), 4810. https://doi.org/10.3390/ijms23094810
  • Hussein, M. H., Eltanahy, E., Al Bakry, A. F., Elsafty, N., & Elshamy, M. M. (2021). Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. Journal of Applied Phycology, 33(2), 1273-1291. https://doi.org/10.1007/s10811-020-02330-x
  • Kacar, B., İnal, A. (2010). Plant Analysis. Nobel Publication Distribution. Ankara.
  • Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., ... & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399. https://doi.org/10.1007/s00344-009-9103-x
  • Kumar, G., Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251-255. https://doi.org/10.1007/s10811-011-9660-9
  • Latique, S., Chernane, H., Mansori, M., & El Kaoua, M. (2013). Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. European Scientific Journal, 9(30).
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  • Marschner, H. (Ed.). (2011). Marschner's mineral nutrition of higher plants. Academic press.
  • Mia, S., Dijkstra, F.A., Singh, B. (2018) Enhanced biological nitrogen fixation and competitive advantage of legumes in mixed pastures diminish with biochar aging. Plant Soil, 424, 639–651. https://doi.org/10.1007/s11104-018-3562-4
  • Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1), 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911
  • Ok, Y. S., Palansooriya, K. N., Yuan, X., & Rinklebe, J. (2022). Special issue on biochar technologies, production, and environmental applications in Critical Reviews in Environmental Science & Technology during 2017–2021. Critical Reviews in Environmental Science and Technology, 52(19), 3375-3383. https://doi.org/10.1080/10643389.2021.1990446
  • Parida, A. K., Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075. https://doi.org/10.1007/s11356-014-3739-1
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., ... & Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural Resources Forum, 38(4), 282-295). https://doi.org/10.1111/1477-8947.12054
  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613-620. DOI:10.1071/FP09249
  • Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397-409. http://dx.doi.org/10.4067/S0718-95162015005000036
  • Saleem, S., Mushtaq, N. U., Rasool, A., Shah, W. H., Tahir, I., & Rehman, R. U. (2023). Plant nutrition and soil fertility: physiological and molecular avenues for crop improvement. In Sustainable Plant Nutrition (pp. 23-49). Academic Press. https://doi.org/10.1016/B978-0-443-18675-2.00009-2
  • Salim, B. B. M. (2016). Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L.) under sandy soil conditions. Annals of Agricultural Sciences, 61(2), 257-265. https://doi.org/10.1016/j.aoas.2016.06.001
  • Sensoy, S. (2024). The role of biostimulants in enhancing yield, quality, and stress tolerance in sustainable vegetable production. In book: Innovations in Sustainable Agriculture and Aquatic Sciences. Publisher: Akademisyen Publishing House
  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135. https://doi.org/10.1007/s10725-005-5482-6
  • Shrivastava, P., Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. doi: 10.1016/j.sjbs.2014.12.001
  • Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 462648. https://doi.org/10.3389/fpls.2019.00655
  • Stirk, W. A., Rengasamy, K. R., Kulkarni, M. G., & van Staden, J. (2020). Plant biostimulants from seaweed: An overview. The Chemical Biology of Plant Biostimulants, 31,55. https://doi.org/10.1002/9781119357254.ch2
  • Wu, Y., Wang, X., Zhang, L., Zheng, Y., Liu, X., & Zhang, Y. (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 14, 1163451. https://doi.org/10.3389/fpls.2023.1163451
  • Ünlükara, A., Kurunç, A., Kesmez, G. D., Yurtseven, E., & Suarez, D. L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage: the Journal of the International Commission on Irrigation and Drainage, 59(2), 203–214. https://doi.org/10.1002/ird.453
  • Yang, T., Samarakoon, U., Altland, J., & Ling, P. (2021). Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown arugula (Eruca sativa Mill.)‘standard’under different electrical conductivities of nutrient solution. Agronomy, 11(7), 1340. https://doi.org/10.3390/agronomy11071340
  • Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922. https://doi.org/10.1016/j.cej.2019.05.139
  • Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. 10.1016/j.cell.2016.08.029
There are 47 citations in total.

Details

Primary Language English
Subjects Irrigation Water Quality, Vegetable Growing and Treatment, Plant Nutrition and Soil Fertility
Journal Section Research Article
Authors

Özlem Çakmakcı 0000-0001-6145-4442

Talip Çakmakcı 0000-0001-5815-1256

Submission Date October 26, 2025
Acceptance Date December 5, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Çakmakcı, Ö., & Çakmakcı, T. (2025). Combined Effects of Biochar and Seaweed Extract on Soil Nutrient Dynamics and Physiological Responses of Arugula under Saline Irrigation. International Journal of Agriculture Environment and Food Sciences, 9(4), 1169-1180. https://doi.org/10.31015/2025.4.19

Abstracting & Indexing Services



© International Journal of Agriculture, Environment and Food Sciences

All content published in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Authors retain copyright of their work and grant the journal a non-exclusive right to publish, reproduce, and distribute the articles within an open-access framework.

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone / WhatsApp: +90 850 309 59 27


TRDizinlogo_live-e1586763957746.png  ADP_cert_2026.png CABI.png