Research Article
BibTex RIS Cite

The Effects of Substitution of Green Tea with Spirulina (Arthrospira platensis) Biomass on the Quality of Kombucha

Year 2025, Volume: 9 Issue: 4, 1241 - 1265, 26.12.2025
https://doi.org/10.31015/2025.4.25

Abstract

This study examined the impacts of replacing green tea with organic spirulina (Arthrospira platensis) powder at different ratios (0, 25, 50, 75, and 100%, w/w) on the physicochemical and bioactive contents, antioxidant capacity, and sensory attributes of traditional kombucha. Green tea-spirulina mixtures were exposed to fermentation at 20°C for 21 days, and their physicochemical properties, DPPH-radical scavenging activity, contents of bioactive compounds, organic acids, sugar, ethanol, and sensory attributes were evaluated on the 0th, 7th, 14th, and 21st days of the fermentation. Spirulina supplementation significantly accelerated metabolic activity, which increased sucrose hydrolysis and a notable surge in ethanol production (up to 5.73 g/L), which often exceeded non-alcoholic regulatory limits. The incorporation of spirulina affected color values, increased mineral contents (Ca, K, Mg, Cu, Fe, Mn, Zn), and improved sensory attributes at substitution levels of 50-100%. In contrast, total phenolics decreased from 582.45 mg GAE/L to 111.63 mg GAE/L, flavonoids from 234.27 mg QE/L to 30.41 mg QE/L, condensed tannins from 74.90 mg CE/L to 12.48 mg CE/L, and DPPH-radical scavenging activity from 455.11 mM TE/L to 62.25 mM TE/L as the spirulina ratio increased from 0% to 100% in the formulation. The organic acid profile shifted with substitution; spirulina addition promoted acetic and malic acid accumulation while suppressing lactic acid production. The results suggest that spirulina powder could be a promising substrate for kombucha production, which improves its nutritional and sensory attributes. However, the replacement level should be optimized to maximize the bioactives’ contents and consumer acceptability of kombucha as well as to control ethanol levels.

Supporting Institution

Manisa Celal Bayar University Scientific Research Projects Coordination Unit

Project Number

2025-026

Thanks

The authors thank Dr. Hakan Apaydın, who carried out mineral analysis at the Scientific Technical Application and Research Center of Hitit University (HUBTUAM). Additionally, the authors also gratefully acknowledge the assistance of Ceren İnce Yiğit (MSc.), İncinur Alp (MSc.), Tuba Aydın (MSc.), and Melisa Özçelik (MSc.) for their technical assistance.

References

  • Abdullahi, A. D., Kodchasee, P., Unban, K., Pattananandecha, T., Saenjum, C., Kanpiengjai, A., Shetty, K., & Khanongnuch, C. (2021). Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants, 10(7), 1144. https://doi.org/10.3390/antiox10071144
  • Aboobacker, S., Kitrytė-Syrpa, V., Šipailienė, A., Rutkaitė, R., & Syrpas, M. (2025). Fermentation-induced nutritional and in vitro antioxidant capacity changes in Arthrospira platensis (spirulina). Food Bioscience, 68. https://doi.org/10.1016/j.fbio.2025.106747
  • Abu Zarin, M., Wan, H. Y., Isha, A., & Armania, N. (2016). Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Science and Human Wellness, 5(2), 65–75. https://doi.org/10.1016/j.fshw.2016.02.001
  • Abuduaibifu, A., & Tamer, C. E. (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation, 43(9). https://doi.org/10.1111/jfpp.14077
  • Adjali, A., Clarot, I., Chen, Z., Marchioni, E., & Boudier, A. (2022). Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis, 12(3), 406–414. https://doi.org/10.1016/j.jpha.2021.12.005
  • Ahmed, R. F., Hikal, M. S., & Abou-Taleb, K. A. (2020a). Biological, chemical and antioxidant activities of different types Kombucha. Annals of Agricultural Sciences, 65(1), 35–41. https://doi.org/10.1016/j.aoas.2020.04.001
  • Ahmed, R. F., Hikal, M. S., & Abou-Taleb, K. A. (2020b). Biological, chemical and antioxidant activities of different types Kombucha. Annals of Agricultural Sciences, 65(1), 35–41. https://doi.org/10.1016/j.aoas.2020.04.001
  • Akgül, F., & Akgül, R. (2024). Effects of Different Zinc Concentrations on Culture Growth of Spirulina platensis and Its Production of Zinc Enriched as Superfood. Turkish Journal of Agriculture - Food Science and Technology, 12(12), 2615–2623. https://doi.org/10.24925/turjaf.v12i12.2615-2623.7098
  • Ali, A., Riaz, S., Khalid, W., Fatima, M., Mubeen, U., Babar, Q., Manzoor, M. F., Zubair Khalid, M., & Madilo, F. K. (2024). Potential of ascorbic acid in human health against different diseases: an updated narrative review. International Journal of Food Properties, 27(1), 493–515. https://doi.org/10.1080/10942912.2024.2327335
  • Al-Kharousi, Z. S. (2025). Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives. Foods, 14(12), 2043. https://doi.org/10.3390/foods14122043
  • Almeida, L. M. R., Cruz, L. F. da S., Machado, B. A. S., Nunes, I. L., Costa, J. A. V., Ferreira, E. de S., Lemos, P. V. F., Druzian, J. I., & Souza, C. O. de. (2021). Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research, 58. https://doi.org/10.1016/j.algal.2021.102387
  • Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition, 6(3), 659–665. https://doi.org/10.1002/fsn3.605
  • Andayani, S. N., Sitepu, G. S. B., Kramas, D. A. T. A. S., Sukmahendri, I. G. A. A. I., & Ariningsih, N. K. (2024). Utilization of Balinese Grapes (Vitis vinifera L.) to Produce Kombucha from Different Teas: Chemical and Sensory Characterisation. BIO Web of Conferences, 98. https://doi.org/10.1051/bioconf/20249806006
  • Ansari, F., Pourjafar, H., & Esmailpour, S. (2017). Study on citric acid production and antibacterial activity of kombucha green tea beverage during production and storage. Annual Research and Review in Biology, 16(3). https://doi.org/10.9734/ARRB/2017/35664
  • Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants, 10(10), 1541. https://doi.org/10.3390/antiox10101541
  • AOAC. (2019). Official Methods of Analysis of AOAC International (G. W. Latimer, Ed.; 21st ed.). AOAC International.
  • Assad, M., Ashaolu, T. J., Khalifa, I., Baky, M. H., & Farag, M. A. (2023). Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology, 39(10), 265. https://doi.org/10.1007/s11274-023-03701-5
  • Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. In Biotechnology Advances (Vol. 26, Issue 1, pp. 89–105). https://doi.org/10.1016/j.biotechadv.2007.09.002
  • Balentine, D. A., Wiseman, S. A., & Bouwens, L. C. M. (1997). The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition, 37(8), 693–704. https://doi.org/10.1080/10408399709527797
  • Barakat, N., Bouajila, J., Beaufort, S., Rizk, Z., Taillandier, P., & El Rayess, Y. (2024). Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages, 10(2). https://doi.org/10.3390/beverages10020029
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M. A., Fendri, I., Attia, H., & Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT, 84, 323–330. https://doi.org/10.1016/j.lwt.2017.05.071
  • Bauer-Petrovska, B., & Petrushevska-Tozi, L. (2000). Mineral and water soluble vitamin content in the Kombucha drink. International Journal of Food Science and Technology, 35, 201–205.
  • Begum, W., Rai, S., Banerjee, S., Bhattacharjee, S., Mondal, M. H., Bhattarai, A., & Saha, B. (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 12(15), 9139–9153. https://doi.org/10.1039/D2RA00378C
  • Bressani, A. P. P., Casimiro, L. K. S., Martinez, S. J., Dias, D. R., & Schwan, R. F. (2024). Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Research International, 192, 114762. https://doi.org/10.1016/j.foodres.2024.114762
  • Broadhurst, R. B., & Jones, W. T. (1978a). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788–794. https://doi.org/10.1002/jsfa.2740290908
  • Broadhurst, R. B., & Jones, W. T. (1978b). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788–794. https://doi.org/10.1002/jsfa.2740290908
  • Buxton, S., Garman, E., Heim, K. E., Lyons-Darden, T., Schlekat, C. E., Taylor, M. D., & Oller, A. R. (2019). Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics, 7(7), 89. https://doi.org/10.3390/inorganics7070089
  • Câmara, G. B., Do Prado, G. M., de Sousa, P. H. M., Viera, V. B., de Araújo, H. W. C., Lima, A. R. N., Filho, A. A. L. A., Vieira, Í. G. P., Fernandes, V. B., Oliveira, L. D. S., & da Silva, L. M. R. (2024). Biotransformation of Tropical Fruit By-Products for the Development of Kombucha Analogues with Antioxidant Potential. Food Technology and Biotechnology, 62(3), 361–372. https://doi.org/10.17113/ftb.62.03.24.8350
  • Castiglioni, S., Damiani, E., Astolfi, P., & Carloni, P. (2015). Influence of steeping conditions (time, temperature, and particle size) on antioxidant properties and sensory attributes of some white and green teas. International Journal of Food Sciences and Nutrition, 66(5), 491–497. https://doi.org/10.3109/09637486.2015.1042842
  • Çelekli, A., Alslibi, Z. A., & Bozkurt, H. üseyin. (2019). Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research, 44. https://doi.org/10.1016/j.algal.2019.101710
  • Cemeroglu, B. S. (2007). Gıda Analizleri (4th ed.). Bizim Buro Yayinevi.
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  • Cheepchirasuk, N., Kaewkod, T., Suriyaprom, S., Intachaisri, V., Ngamsaard, P., & Tragoolpua, Y. (2025). Functional metabolites and inhibitory efficacy of kombucha beverage on pathogenic bacteria, free radicals and inflammation. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-03545-z
  • Chen, F.-I., Chang, Y.-T., Khoirunnida, F. L., Pan, H.-Y., Chuang, P.-Y., & Lu, Y.-C. (2025). The effect of different yeast and bacterial strain combinations on the physicochemical and metabolic profile of kombucha fermentation. International Journal of Gastronomy and Food Science, 42, 101296. https://doi.org/10.1016/j.ijgfs.2025.101296
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502–507. https://doi.org/10.1016/j.foodchem.2005.05.080
  • Dartora, B., Hickert, L. R., Fabricio, M. F., Ayub, M. A. Z., Furlan, J. M., Wagner, R., Perez, K. J., & Sant’Anna, V. (2023). Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Research International, 174. https://doi.org/10.1016/j.foodres.2023.113569
  • Das, P., Roy, A. C., Ghosh, I., & Ghosh, C. (2024). Variation in leaf morphology and architecture, phytochemical content, and antioxidant capacity among 36 Camellia sinensis clones of the Indian sub-Himalayan region. Plant Biosystems, 158(5), 877–893. https://doi.org/10.1080/11263504.2024.2374331
  • de Lima, A. S. L., de Medeiros Felipe, A. T., de Oliveira Paiva, E. M., Medeiros, R. D., de Sousa Junior, F. C., Matsui, K. N., Zucolotto, S. M., & da Silva Pedrini, M. R. (2025). Fermentation of passion fruit leaf tea with Kombucha inoculum: An upcycling approach for the development of functional fermented beverages. Food Research International, 218, 116870. https://doi.org/10.1016/j.foodres.2025.116870
  • de Noronha, M. C., Cardoso, R. R., dos Santos D’Almeida, C. T., Vieira do Carmo, M. A., Azevedo, L., Maltarollo, V. G., Júnior, J. I. R., Eller, M. R., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. de. (2022). Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chemistry, 384. https://doi.org/10.1016/j.foodchem.2022.132515
  • Díaz-Quiroz, C. A., Márquez-Reyes, J. M., Ngangyo-Heya, M., Elizondo-Luevano, J. H., Romero-Soto, I. C., Verdugo-Fuentes, A. A., Díaz-Tenorio, L. M., Nápoles-Armenta, J., Samaniego-Moreno, L., Mora-Orozco, C. D. La, Martínez-Orozco, E., García-Gómez, C., & Chávez, J. F. H. (2025). Sustainable Integrated Algal Biomass Biorefinery: Synergistic Macronutrient Optimization and Electro-Flocculation Coagulation Harvesting. Sustainability, 17(19), 8679. https://doi.org/10.3390/su17198679
  • Donlao, N., & Ogawa, Y. (2019). The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT, 116. https://doi.org/10.1016/j.lwt.2019.108567
  • Du, J., Cullen, J. J., & Buettner, G. R. (2012). Ascorbic acid: Chemistry, biology and the treatment of cancer. In Biochimica et Biophysica Acta - Reviews on Cancer (Vol. 1826, Issue 2, pp. 443–457). https://doi.org/10.1016/j.bbcan.2012.06.003
  • Ebid, W. M. A., Ali, G. S., & Elewa, N. A. H. (2022). Impact of Spirulina platensis on physicochemical, antioxidant, microbiological and sensory properties of functional labneh. Discover Food, 2(1). https://doi.org/10.1007/s44187-022-00031-7
  • Ekantari, N., Harmayani, E., Pranoto, Y., & Marsono, Y. (2017). Calcium of Spirulina platensis has higher bioavailability than those of calcium carbonate and high-calcium milk in sprague dawley rats fed with vitamin D-deficient diet. Pakistan Journal of Nutrition, 16(3), 179–186. https://doi.org/10.3923/pjn.2017.179.186
  • El Kabous, K., Mechkirrou, L., Oubihi, A., Mharchi, S., & Ouhssine, M. (2025). Evaluation of spirulina quality and antioxidant capacity: A physicochemical and bioactive analysis. E3S Web of Conferences, 632. https://doi.org/10.1051/e3sconf/202563201018
  • El-Hamidi, M., Zaher, F. A., & El-Shami, S. M. (2016). Interaction of oilseed pigments and phospholipids in the determination of total phenolic compounds using the Folin-Ciocalteu reagent. International Journal of ChemTech Research, 9(5), 207–214.
  • Erem, E., & Kilic‐Akyilmaz, M. (2024). The role of fermentation with lactic acid bacteria in quality and health effects of plant‐based dairy analogues. Comprehensive Reviews in Food Science and Food Safety, 23(4). https://doi.org/10.1111/1541-4337.13402
  • Fradinho, P., Niccolai, A., Soares, R., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2020). Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 45. https://doi.org/10.1016/j.algal.2019.101743
  • Frolova, Y., Vorobyeva, V., Vorobyeva, I., Sarkisyan, V., Malinkin, A., Isakov, V., & Kochetkova, A. (2023). Development of Fermented Kombucha Tea Beverage Enriched with Inulin and B Vitamins. Fermentation, 9(6). https://doi.org/10.3390/fermentation9060552
  • Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167–176. https://doi.org/10.1080/15376516.2019.1701594
  • Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2018). Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients, 11(1), 1. https://doi.org/10.3390/nu11010001
  • He, X., Cui, Y., Jia, Q., Zhuang, Y., Gu, Y., Fan, X., & Ding, Y. (2025). Response mechanisms of lactic acid bacteria under environmental stress and their application in the food industry. In Food Bioscience (Vol. 64). Elsevier Ltd. https://doi.org/10.1016/j.fbio.2025.105938
  • Herrera, M., Viera, I., & Roca, M. (2023). Study of the authentic composition of the novel green foods: Food colorants and coloring foods. Food Research International, 170. https://doi.org/10.1016/j.foodres.2023.112974
  • Huang, G., Huang, Y., Sun, Y., Lu, T., Cao, Q., & Chen, X. (2024). Characterization of kombucha prepared from black tea and coffee leaves: A comparative analysis of physiochemical properties, bioactive components, and bioactivities. Journal of Food Science, 89(6), 3430–3444. https://doi.org/10.1111/1750-3841.17027
  • Ikeda, M. E. T. S., Quináia, S. P., Pucholobek, G., Guerrero, M. D. C. L., Cardoso, F. A. R., Perdoncini, M. R. F. G., & Rigobello, E. S. (2024). Unveiling the functional potential: Mineral analysis of kombucha enriched with spices as a flavorful health beverage. South African Journal of Botany, 171, 497–503. https://doi.org/10.1016/j.sajb.2024.06.030
  • Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A., & Kačániová, M. (2020). The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology, 57(5), 1840–1846. https://doi.org/10.1007/s13197-019-04217-3
  • Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5). https://doi.org/10.3390/antiox9050447
  • Jakubczyk, K., Kupnicka, P., Melkis, K., Mielczarek, O., Walczyńska, J., Chlubek, D., & Janda-Milczarek, K. (2022). Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients, 14(22), 4828. https://doi.org/10.3390/nu14224828
  • Jang, S. S. I. K., McIntyre, L., Chan, M., Brown, P. N., Finley, J., & Chen, S. X. (2021). Ethanol concentration of kombucha teas in British Columbia, Canada. Journal of Food Protection, 84(11), 1878–1883. https://doi.org/10.4315/JFP-21-130
  • Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538–550. https://doi.org/10.1111/1541-4337.12073
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392–398. https://doi.org/10.1016/j.foodchem.2006.05.032
  • Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M., & Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109(1), 227–234. https://doi.org/10.1016/j.foodchem.2007.12.037
  • Jaywant, S. A., Singh, H., & Arif, K. M. (2022). Sensors and Instruments for Brix Measurement: A Review. Sensors, 22(6), 2290. https://doi.org/10.3390/s22062290
  • Kaashyap, M., Cohen, M., & Mantri, N. (2021). Microbial diversity and characteristics of kombucha as revealed by metagenomic and physicochemical analysis. Nutrients, 13(12). https://doi.org/10.3390/nu13124446
  • Kallel, L., Desseaux, V., Hamdi, M., Stocker, P., & Ajandouz, E. H. (2012). Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Research International, 49(1), 226–232. https://doi.org/10.1016/j.foodres.2012.08.018
  • Kårlund, A., Gómez-Gallego, C., Korhonen, J., Palo-oja, O.-M., El-Nezami, H., & Kolehmainen, M. (2020). Harnessing Microbes for Sustainable Development: Food Fermentation as a Tool for Improving the Nutritional Quality of Alternative Protein Sources. Nutrients, 12(4), 1020. https://doi.org/10.3390/nu12041020
  • Kartika, D. A., Leswana, N. F., & Taufiqurrahman, Muh. (2025). Antioxidant Activity in Kombucha (Scooby) Tea Based on Fermentation Duration with DPPH (1,1-Diphenyl-2-Picrylhydrazyl) Method. Jurnal Sains Dan Teknologi Farmasi Indonesia, 14, 84–90.
  • Kh Shalaby, O., & Saad Elsayed, N. (2025). The Multifaceted Role of Spirulina in Environmental Sustainability: Applications in Aquatic Systems and Ecosystem Management (Vol. 29, Issue 1). www.ejabf.journals.ekb.eg
  • Khaleil, M. M., Ellatif, S. A., Soliman, M. H., Elrazik, E. S. A., & Fadel, M. Sh. (2020). A bioprocesss development study of polyphenol profile, antioxidant and antimicrobial activities of kombucha enriched with Psidium guajava L. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1204–1210. https://doi.org/10.15414/jmbfs.2020.9.6.1204-1210
  • Kim, H., Hur, S., Lim, J., Jin, K., Yang, T., Keehm, I., Kim, S. W., Kim, T., & Kim, D. (2023). Enhancement of the phenolic compounds and antioxidant activities of Kombucha prepared using specific bacterial and yeast. Food Bioscience, 56, 103431. https://doi.org/10.1016/j.fbio.2023.103431
  • Kim, J., & Adhikari, K. (2020). Current Trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages, 6(1), 15. https://doi.org/10.3390/beverages6010015
  • Kitwetcharoen, H., Phannarangsee, Y., Klanrit, P., Thanonkeo, S., Tippayawat, P., Klanrit, P., Klanrit, P., Yamada, M., & Thanonkeo, P. (2024). Functional kombucha production from fusions of black tea and Indian gooseberry (Phyllanthus emblica L.). Heliyon, 10(24). https://doi.org/10.1016/j.heliyon.2024.e40939
  • Kluz, M. I., Pietrzyk, K., Pastuszczak, M., Kacaniova, M., Kita, A., Kapusta, I., Zaguła, G., Zagrobelna, E., Struś, K., Marciniak-Lukasiak, K., Stanek-Tarkowska, J., Timar, A. V., & Puchalski, C. (2022). Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods, 11(10). https://doi.org/10.3390/FOODS11101523
  • Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609–615. https://doi.org/10.1016/j.foodchem.2005.09.079
  • Kövilein, A., Kubisch, C., Cai, L., & Ochsenreither, K. (2020). Malic acid production from renewables: a review. In Journal of Chemical Technology and Biotechnology (Vol. 95, Issue 3, pp. 513–526). John Wiley and Sons Ltd. https://doi.org/10.1002/jctb.6269
  • Kruk, M., Trząskowska, M., Ścibisz, I., & Pokorski, P. (2021). Application of the “scoby” and kombucha tea for the production of fermented milk drinks. Microorganisms, 9(1), 1–17. https://doi.org/10.3390/microorganisms9010123
  • La Torre, C., Plastina, P., Cione, E., Bekatorou, A., Petsi, T., & Fazio, A. (2024). Improved Antioxidant Properties and Vitamin C and B12 Content from Enrichment of Kombucha with Jujube (Ziziphus jujuba Mill.) Powder. Fermentation, 10(6). https://doi.org/10.3390/fermentation10060295
  • Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha Tea Fermentation: A Review. Journal of the American Society of Brewing Chemists, 78(3), 165–174. https://doi.org/10.1080/03610470.2020.1734150
  • Lee, C. Y. (2018). Fruits and Vegetables. In J. M. DeMan, J. W. Finley, W. J. Hurst, & C. Y. Lee (Eds.), Principles of Food Chemistry (4th Ed., pp. 435–455). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63607-8_11
  • Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D., & Poletto, P. (2021). Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110075
  • Li, S., Liu, R., Jing, Z., Guo, Y., & Wang, Z. (2025). Enhancing functional metabolites and antioxidant activity of a novel alternative kombucha-like beverage: Tailor-made symbiotic microbial consortium for apple juice fermentation. Food Bioscience, 68, 106615. https://doi.org/10.1016/j.fbio.2025.106615
  • Liamkaew, R., Chattrawanit, J., & Danvirutai, P. (2016). Kombucha Production by Combinations of Black Tea and Apple Juice. Science and Technology RMUTT Journal, 6(2), 139–146.
  • Liang, W., Wang, X., Zhang, L., Jiao, S., Song, H., Sun, J., & Wang, D. (2024). Changes and biotransformation mechanism of main functional compounds during kombucha fermentation by the pure cultured tea fungus. Food Chemistry, 458. https://doi.org/10.1016/j.foodchem.2024.140242
  • Lončar, E., Djurić, M., Malbaša, R., Kolarov, L. J., & Klašnja, M. (2006). Influence of Working Conditions Upon Kombucha Conducted Fermentation of Black Tea. Food and Bioproducts Processing, 84(3), 186–192. https://doi.org/10.1205/fbp.04306
  • Lucas, B. F., Morais, M. G. de, Santos, T. D., & Costa, J. A. V. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT, 90, 270–276. https://doi.org/10.1016/j.lwt.2017.12.032
  • Makvandi, M., Fadaei, V., & Khosravi-Darani, K. (2021). Characterization of yogurt prepared with kombucha starter culture as inoculum. In Food & Health (Vol. 2021, Issue 4).
  • Malbaša, R., Lončar, E., Djurić, M., & Došenović, I. (2008). Effect of sucrose concentration on the products of Kombucha fermentation on molasses. Food Chemistry, 108(3), 926–932. https://doi.org/10.1016/j.foodchem.2007.11.069
  • Marjanović, B., Benković, M., Jurina, T., Sokač Cvetnić, T., Valinger, D., Gajdoš Kljusurić, J., & Jurinjak Tušek, A. (2024). Bioactive Compounds from Spirulina spp.—Nutritional Value, Extraction, and Application in Food Industry. In Separations (Vol. 11, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/separations11090257
  • Martelli, F., Alinovi, M., Bernini, V., Gatti, M., & Bancalari, E. (2020). Arthrospira platensis as natural fermentation booster for milk and soy fermented beverages. Foods, 9(3). https://doi.org/10.3390/foods9030350
  • Martins, T., Barros, A. N., Rosa, E., & Antunes, L. (2023). Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules, 28(14), 5344. https://doi.org/10.3390/molecules28145344
  • Massoud, R., Jafari-Dastjerdeh, R., Naghavi, N., & Khosravi-Darani, K. (2022). All aspects of antioxidant properties of kombucha drink. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 4018–4027). AMG Transcend Association. https://doi.org/10.33263/BRIAC123.40184027
  • Mfopa, A. N., Kemzeu, R., Fokom, R., Yamthe, L. R. T., Dize, D., & Boyom, F. F. (2024). Phenolic compounds, antioxidant and antileishmanial activities of kombucha as affected by fermentation time. Heliyon, 10(22). https://doi.org/10.1016/j.heliyon.2024.e40463
  • Moradi, S., Foshati, S., Poorbaferani, F., Talebi, S., Bagheri, R., Amirian, P., Parvizi, F., Nordvall, M., Wong, A., & Zobeiri, M. (2023). The effects of spirulina supplementation on serum iron and ferritin, anemia parameters, and fecal occult blood in adults with ulcerative colitis: A randomized, double-blinded, placebo-controlled trial. Clinical Nutrition ESPEN, 57, 755–763. https://doi.org/10.1016/j.clnesp.2023.08.019
  • Mota, J., & Vilela, A. (2024). Exploring Microbial Dynamics: The Interaction between Yeasts and Acetic Acid Bacteria in Port Wine Vinegar and Its Implications on Chemical Composition and Sensory Acceptance. Fermentation, 10(8), 421. https://doi.org/10.3390/fermentation10080421
  • Munir, N., Jahangeer, M., Bouyahya, A., El Omari, N., Ghchime, R., Balahbib, A., Aboulaghras, S., Mahmood, Z., Akram, M., Ali Shah, S. M., Mikolaychik, I. N., Derkho, M., Rebezov, M., Venkidasamy, B., Thiruvengadam, M., & Shariati, M. A. (2021). Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability, 14(1), 161. https://doi.org/10.3390/su14010161
  • Nalimova, A. A., Popova, V. V., Tsoglin, L. N., & Pronina, N. A. (2005). The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells. Russian Journal of Plant Physiology, 52(2), 229–234. https://doi.org/10.1007/s11183-005-0035-4
  • Neffe-Skocińska, K., Sionek, B., Ścibisz, I., & Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA - Journal of Food, 15(4), 601–607. https://doi.org/10.1080/19476337.2017.1321588
  • Neylon, E., Nyhan, L., Zannini, E., Monin, T., Münch, S., Sahin, A. W., & Arendt, E. K. (2023). Food Ingredients for the Future: In-Depth Analysis of the Effects of Lactic Acid Bacteria Fermentation on Spent Barley Rootlets. Fermentation, 9(1). https://doi.org/10.3390/fermentation9010078
  • Niccolai, A., Venturi, M., Galli, V., Pini, N., Rodolfi, L., Biondi, N., D’Ottavio, M., Batista, A. P., Raymundo, A., Granchi, L., & Tredici, M. R. (2019). Development of new microalgae-based sourdough “crostini”: functional effects of Arthrospira platensis (spirulina) addition. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55840-1
  • Nyhan, L. M., Lynch, K. M., Sahin, A. W., & Arendt, E. K. (2022). Advances in Kombucha Tea Fermentation: A Review. Applied Microbiology, 2(1), 73–103. https://doi.org/10.3390/applmicrobiol2010005
  • Ojo, A. O., & de Smidt, O. (2023). Microbial Composition, Bioactive Compounds, Potential Benefits and Risks Associated with Kombucha: A Concise Review. Fermentation, 9(5), 472. https://doi.org/10.3390/fermentation9050472
  • Onsun, B., Toprak, K., & Sanlier, N. (2025). Kombucha Tea: A Functional Beverage and All its Aspects. In Current Nutrition Reports (Vol. 14, Issue 1). Springer. https://doi.org/10.1007/s13668-025-00658-9
  • Paulino, B. N., Sales, A., Felipe, L., Pastore, G. M., Molina, G., & Bicas, J. L. (2021). Recent advances in the microbial and enzymatic production of aroma compounds. Current Opinion in Food Science, 37, 98–106. https://doi.org/10.1016/j.cofs.2020.09.010
  • Peyer, L. C., Bellut, K., Lynch, K. M., Zarnkow, M., Jacob, F., De Schutter, D. P., & Arendt, E. K. (2017). Impact of buffering capacity on the acidification of wort by brewing-relevant lactic acid bacteria. Journal of the Institute of Brewing, 123(4), 497–505. https://doi.org/10.1002/jib.447
  • Phung, L. T., Kitwetcharoen, H., Chamnipa, N., Boonchot, N., Thanonkeo, S., Tippayawat, P., Klanrit, P., Yamada, M., & Thanonkeo, P. (2023). Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-34954-7
  • Podgórska-Kryszczuk, I. (2024a). Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. In Molecules (Vol. 29, Issue 22). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules29225387
  • Podgórska-Kryszczuk, I. (2024b). Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules, 29(22), 5387. https://doi.org/10.3390/molecules29225387
  • Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698
  • Pure, A. E., & Pure, M. E. (2016). Antioxidant and Antibacterial Activity of Kombucha Beverages Prepared using Banana Peel, Common Nettles and Black Tea Infusions. Applied Food Biotechnology, 3(2), 125–130. www.journals.sbmu.ac.ir/afb
  • Ramírez-Aroca, L., Querol, A., Ferreira, V., & Minebois, R. (2026). Specific impact of nitrogen supplementation on the metabolism of Saccharomyces and hybrids during wine fermentation. International Journal of Food Microbiology, 445, 111493. https://doi.org/10.1016/j.ijfoodmicro.2025.111493
  • Ramírez-Rodrigues, M. M., Estrada-Beristain, C., Metri-Ojeda, J., Pérez-Alva, A., & Baigts-Allende, D. K. (2021). Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126849
  • Reiss, J. (1994). Influence of different sugars on the metabolism of the tea fungus. Zeitschrift F�r Lebensmittel-Untersuchung Und -Forschung, 198(3), 258–261. https://doi.org/10.1007/BF01192606
  • Riyadi, P. H., Susanto, E., Anggo, A. D., Arifin, M. H., & Rizki, L. (2023). Effect of methanol solvent concentration on the extraction of bioactive compounds using ultrasonic-assisted extraction (UAE) from Spirulina platensis. Food Research, 7, 59–66. https://doi.org/10.26656/fr.2017.7(S3).9
  • Roca-Mesa, H., Sendra, S., Mas, A., Beltran, G., & Torija, M.-J. (2020). Nitrogen Preferences during Alcoholic Fermentation of Different Non-Saccharomyces Yeasts of Oenological Interest. Microorganisms, 8(2), 157. https://doi.org/10.3390/microorganisms8020157
  • Sadok, I., Rachwał, K., Jonik, I., Żukociński, G., & Kwiatkowska, O. (2025). Effect of temperature and time on mold growth, mycotoxin contamination, phytochemicals and microbiological characteristics of kombucha tea during fermentation. Food Control, 175, 111296. https://doi.org/10.1016/j.foodcont.2025.111296
  • Sánchez-Rodríguez, L., Ali, N. S., Cano-Lamadrid, M., Noguera-Artiaga, L., Lipan, L., Carbonell-Barrachina, Á. A., & Sendra, E. (2019). Flavors and Aromas. In E. M. Yahia (Ed.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 385–404). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813278-4.00019-1
  • Santamaria, A. B., & Sulsky, S. I. (2010). Risk Assessment of an Essential Element: Manganese. Journal of Toxicology and Environmental Health, Part A, 73(2–3), 128–155. https://doi.org/10.1080/15287390903337118
  • Sawant, S. S., Park, H.-Y., Sim, E.-Y., Kim, H.-S., & Choi, H.-S. (2025). Microbial Fermentation in Food: Impact on Functional Properties and Nutritional Enhancement—A Review of Recent Developments. Fermentation, 11(1), 15. https://doi.org/10.3390/fermentation11010015
  • Seghiri, R., Kharbach, M., & Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of moroccan spirulina microalga. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/3707219
  • Shahbazi, H., Hashemi Gahruie, H., Golmakani, M., Eskandari, M. H., & Movahedi, M. (2018). Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science & Nutrition, 6(8), 2568–2577. https://doi.org/10.1002/fsn3.873
  • Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., Gat, Y., & Kumar, A. (2021). Health effects, sources, utilization and safety of tannins: a critical review. Toxin Reviews, 40(4), 432–444. https://doi.org/10.1080/15569543.2019.1662813
  • Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U., & Teuber, M. (1995). Microbiology and Fermentation Balance in a Kombucha Beverage Obtained from a Tea Fungus Fermentation. Systematic and Applied Microbiology, 18(4), 590–594. https://doi.org/10.1016/S0723-2020(11)80420-0
  • Silva, N. C., Graton, I. S., Duarte, C. R., & Barrozo, M. A. S. (2023). Effects of Infrared and Microwave Radiation on the Bioactive Compounds of Microalga Spirulina platensis after Continuous and Intermittent Drying. Molecules, 28(16). https://doi.org/10.3390/molecules28165963
  • Sinetova, M. A., Kupriyanova, E. V., & Los, D. A. (2024). Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. In Foods (Vol. 13, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13172762
  • Spínola, M. P., Mendes, A. R., & Prates, J. A. M. (2024). Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. In Foods (Vol. 13, Issue 22). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13223656
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Kombucha Fermentation and Its Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 48(6), 2589–2594. https://doi.org/10.1021/jf991333m
  • Stunda-Zujeva, A., Berele, M., Lece, A., & Šķesters, A. (2023). Comparison of antioxidant activity in various spirulina containing products and factors affecting it. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-31732-3
  • Suffys, S., Richard, G., Burgeon, C., Werrie, P. Y., Haubruge, E., Fauconnier, M. L., & Goffin, D. (2023). Characterization of Aroma Active Compound Production during Kombucha Fermentation: Towards the Control of Sensory Profiles. Foods, 12(8). https://doi.org/10.3390/foods12081657
  • Talebi, M., Frink, L. A., Patil, R. A., & Armstrong, D. W. (2017). Examination of the Varied and Changing Ethanol Content of Commercial Kombucha Products. Food Analytical Methods, 10(12), 4062–4067. https://doi.org/10.1007/s12161-017-0980-5
  • Tanticharakunsiri, W., Mangmool, S., Wongsariya, K., & Ochaikul, D. (2021). Characteristics and upregulation of antioxidant enzymes of kitchen mint and oolong tea kombucha beverages. Journal of Food Biochemistry, 45(1). https://doi.org/10.1111/jfbc.13574
  • Tanushree, & Katyal, P. (2024). Production and Analysis of Kombucha : A Black Tea based Functional Beverage. Journal of Scientific and Industrial Research, 83(9), 1001–1011. https://doi.org/10.56042/jsir.v83i9.5966
  • Taşkın, B., & Aksoylu Özbek, Z. (2020a). Optimisation of microwave effect on bioactives contents and colour attributes of aqueous green tea extracts by central composite design. Journal of Food Measurement and Characterization, 14(4), 2240–2252. https://doi.org/10.1007/s11694-020-00471-8
  • Taşkın, B., & Aksoylu Özbek, Z. (2020b). Optimisation of microwave effect on bioactives contents and colour attributes of aqueous green tea extracts by central composite design. Journal of Food Measurement and Characterization, 14(4), 2240–2252. https://doi.org/10.1007/s11694-020-00471-8
  • Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, W. L., Adams, W. J., & Menzie, C. A. (2020). Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environmental Management, 65(1), 131–159. https://doi.org/10.1007/s00267-019-01234-y
  • Terpou, A., Bosnea, L., Mataragkas, M., & Markou, G. (2021). Influence of Incorporated Arthrospira (Spirulina) platensis on the Growth of Microflora and Physicochemical Properties of Feta-Type Cheese as Functional Food. Proceedings, 70, 97. https://doi.org/10.3390/foods_2020-07659
  • Thongbai, B., Sukboonyasatit, D., Banlue, K., Inchuen, S., Chuenta, W., Siriamornpun, S., & Suwannarong, S. (2025). Cascara Kombucha: The Role of Fermentation and Particle Size in Enhancing Antioxidant and Bioactive Properties. Molecules, 30(9), 1934. https://doi.org/10.3390/molecules30091934
  • Tokatlı Demirok, N., Yıkmış, S., Duman Altan, A., & Apaydın, H. (2024). Optimization of ultrasound-treated horsetail-fortified traditional apple vinegar using RSM and ANFIS modeling: bioactive and sensory properties. Journal of Food Measurement and Characterization, 18(1), 256–271. https://doi.org/10.1007/s11694-023-02156-4
  • Tokuşoglu, Ö., & Ünal, M. K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris , and Isochrisis galbana. Journal of Food Science, 68(4), 1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
  • Tolpeznikaite, E., Bartkevics, V., Skrastina, A., Pavlenko, R., Ruzauskas, M., Starkute, V., Zokaityte, E., Klupsaite, D., Ruibys, R., Rocha, J. M., & Bartkiene, E. (2023). Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. Biology, 12(2). https://doi.org/10.3390/biology12020248
  • Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H., & Tourdot-Maréchal, R. (2020). Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage. Foods, 9(7). https://doi.org/10.3390/foods9070963
  • Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H., & Tourdot‐Maréchal, R. (2020). Microbiological and technological parameters impacting the chemical composition and sensory quality of kombucha. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2050–2070. https://doi.org/10.1111/1541-4337.12574
  • Tsuru, V. H., Gomes, R. J., Silva, J. R., Prudencio, S. H., Costa, G. N., & Spinosa, W. A. (2021). Physicochemical, antioxidant and sensory properties of Kombucha beverages obtained from oolong or yerba mate tea fermentation. Research, Society and Development, 10(11), e62101118790. https://doi.org/10.33448/rsd-v10i11.18790
  • Tu, C., Tang, S., Azi, F., Hu, W., & Dong, M. (2019). Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods, 52, 81–89. https://doi.org/10.1016/j.jff.2018.10.024
  • Tufan, M., & Kutlu, H. R. (2021). Spirulina (Arthrospira): Kanatlı Kümes Hayvanlarında Yem Katkı Maddesi Olarak Kullanılma Potansiyeli. Turkish Journal of Agriculture - Food Science and Technology, 9(7), 1264–1269. https://doi.org/10.24925/turjaf.v9i7.1264-1269.4090
  • Turkish Food Codex Non-Alcoholic Beverages Communiqué, Pub. L. No. 2007/26 (2007).
  • Tyl, C., & Sadler, G. D. (2017). pH and Titratable Acidity. In S. S. Nielsen (Ed.), Food Analysis (pp. 389–406). Springer. https://doi.org/10.1007/978-3-319-45776-5_22
  • Ulusoy, A., & Tamer, C. E. (2019). Determination of suitability of black carrot (Daucus carota L. spp. sativus var. atrorubens Alef.) juice concentrate, cherry laurel (Prunus laurocerasus), blackthorn (Prunus spinosa) and red raspberry (Rubus ideaus) for kombucha beverage production. Journal of Food Measurement and Characterization, 13(2), 1524–1536. https://doi.org/10.1007/s11694-019-00068-w
  • Uzlaşır, T., Şaşmaz, H. K., & Kelebek, H. (2024). Comparison of Extraction Techniques for Determining Bioactive Compounds and Antioxidant Activity of Spirulina platensis. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 554–560. https://doi.org/10.24925/turjaf.v12i4.554-560.6677
  • Velićanski, A. S., Cvetković, D. D., Tumbas Šaponjac, V. T., & Vulić, J. J. (2014). Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts. Food Technology and Biotechnology, 52(4), 420–429. https://doi.org/10.17113/ftb.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J.-P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44–54. https://doi.org/10.1016/j.procbio.2019.05.004
  • Vishnoi, H., Bodla, R., Kant, R., & Bodla, R. B. (2018). GREEN TEA (CAMELLIA SINENSIS) AND ITS ANTIOXIDANT PROPERTY: A REVIEW. Article in International Journal of Pharmaceutical Sciences and Research, 9(5), 1723. https://doi.org/10.13040/IJPSR.0975-8232.9(5).1723-36
  • Vo, H. H., Tran, K. D., Le-Thi, L., Nguyen-Thi, N. N., Nguyen-Van, T., Dinh-Thi, T. V., Pham, T. A., Nguyen-Thi, T., & Vu-Thi, T. (2024). The Effect of the Addition of Spirulina spp. on the Quality Properties, Health Benefits, and Sensory Evaluation of Green Tea Kombucha. Food Biophysics, 19(4), 911–922. https://doi.org/10.1007/s11483-024-09857-3
  • Vollet, K., Haynes, E. N., & Dietrich, K. N. (2016). Manganese Exposure and Cognition Across the Lifespan: Contemporary Review and Argument for Biphasic Dose–Response Health Effects. Current Environmental Health Reports, 3(4), 392–404. https://doi.org/10.1007/s40572-016-0108-x
  • Vukmanović, S., Vitas, J., & Malbaša, R. (2020). Valorization of winery effluent using kombucha culture. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14627
  • Vukmanović, S., Vitas, J., Ranitović, A., Cvetković, D., Tomić, A., & Malbaša, R. (2022). Certain production variables and antimicrobial activity of novel winery effluent based kombucha. LWT, 154. https://doi.org/10.1016/j.lwt.2021.112726
  • Wang, B., Rutherfurd-Markwick, K., Zhang, X.-X., & Mutukumira, A. N. (2022). Kombucha: Production and Microbiological Research. Foods, 11(21), 3456. https://doi.org/10.3390/foods11213456
  • Wang, S., Li, C., Wang, Y., Wang, S., Zou, Y., Sun, Z., & Yuan, L. (2023). Changes on physiochemical properties and volatile compounds of Chinese kombucha during fermentation. Food Bioscience, 55. https://doi.org/10.1016/j.fbio.2023.103029
  • Wei, Z., Xu, Y., Xu, Q., Cao, W., Huang, H., & Liu, H. (2021). Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. In Frontiers in Bioengineering and Biotechnology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2021.765685
  • Wu, C., Xu, H., Héritier, J., & Andlauer, W. (2012). Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chemistry, 132(1), 144–149. https://doi.org/10.1016/j.foodchem.2011.10.045
  • Wu, H.-L., Wang, G.-H., Xiang, W.-Z., Li, T., & He, H. (2016). Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349–2362. https://doi.org/10.1080/10942912.2015.1038564
  • Xia, X., Dai, Y., Wu, H., Liu, X., Wang, Y., Yin, L., Wang, Z., Li, X., & Zhou, J. (2019). Kombucha fermentation enhances the health-promoting properties of soymilk beverage. Journal of Functional Foods, 62. https://doi.org/10.1016/j.jff.2019.103549
  • Xiao, S., Pan, Y., Li, X., Xu, M., Tang, Y., Cao, Y., Zhou, Y., Zou, L., Zhao, J., & Wang, A. (2024). Effects of tartary buckwheat in enhancing bioactive compounds and sensory properties of traditional fruit kombucha beverage. Cereal Chemistry, 101(1), 274–281. https://doi.org/10.1002/cche.10743
  • Yang, F., Chen, C., Ni, D., Yang, Y., Tian, J., Li, Y., Chen, S., Ye, X., & Wang, L. (2023). Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods, 12(17), 3315. https://doi.org/10.3390/foods12173315
  • Yuliana, N., Nurainy, F., Sari, G. W., Sumardi, & Widiastuti, E. L. (2023). Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Applied Food Research, 3(1). https://doi.org/10.1016/j.afres.2023.100297
  • Zhang, J., Van Mullem, J., Dias, D. R., & Schwan, R. F. (2021). The chemistry and sensory characteristics of new herbal tea-based kombuchas. Journal of Food Science, 86(3), 740–748. https://doi.org/10.1111/1750-3841.15613
  • Zhang, Z., Li, Y., & Abbaspourrad, A. (2020). Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions. Food Hydrocolloids, 105, 105747. https://doi.org/10.1016/j.foodhyd.2020.105747
  • Zheng, Y., Liu, Y., Han, S., He, Y., Liu, R., & Zhou, P. (2024). Comprehensive evaluation of quality and bioactivity of kombucha from six major tea types in China. International Journal of Gastronomy and Food Science, 36. https://doi.org/10.1016/j.ijgfs.2024.100910
There are 167 citations in total.

Details

Primary Language English
Subjects Fermentation Technology, Food Chemistry and Food Sensory Science, Food Sustainability, Food Technology, Beverage Chemistry and Beverage Sensory Science
Journal Section Research Article
Authors

Zeynep Aksoylu Özbek 0000-0002-6184-4755

Melisa Kırnapcı 0009-0007-3409-8076

Project Number 2025-026
Submission Date October 27, 2025
Acceptance Date December 17, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Aksoylu Özbek, Z., & Kırnapcı, M. (2025). The Effects of Substitution of Green Tea with Spirulina (Arthrospira platensis) Biomass on the Quality of Kombucha. International Journal of Agriculture Environment and Food Sciences, 9(4), 1241-1265. https://doi.org/10.31015/2025.4.25

Abstracting & Indexing Services



© International Journal of Agriculture, Environment and Food Sciences

All content published in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Authors retain copyright of their work and grant the journal a non-exclusive right to publish, reproduce, and distribute the articles within an open-access framework.

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone / WhatsApp: +90 850 309 59 27


TRDizinlogo_live-e1586763957746.png  ADP_cert_2026.png CABI.png