The usage of naked barley in the food industry is increasing day by day due to its health benefits. As a result, research on breeding naked barley have gained popularity. In these breeding studies, a wide variation in desired traits is needed to achieve higher success in selection. One of the best methods for obtaining genotypic variation, which is crucial for breeding studies on naked barley, is mutation. To obtain genotypic variation in certain agronomic parameters in naked barley genotypes, the impact of different gamma radiation doses on M1 and M2 plants of two naked barley genotypes was evaluated in this research. The seeds were treated with gamma irradiation using Cobalt 60 gamma source at six different doses, along with non-irradiated control samples. While the values at low doses were found to be comparable to the control in the majority of the traits, 250-300 Gy caused significant decreases in the majority of the traits in the M1 generation of both genotypes. Plant height, number of spikelets per spike, and number of grains per spike at the M2 generation were all negatively impacted by 250–300 Gy, although spike length, grain weight per spike, and thousand grain weight were positively impacted by the same doses. The mutant population generated by gamma irradiation of seeds of different naked barley genotypes was found to have suitable variation for the selection of desired traits. In addition, this material can be used to select individuals with outstanding agronomic characteristics.
The authors are grateful to Dr. Ali Senay from the Ankara Nuclear Research and Training Center, for his contribution to gamma irradiation. We would also like to thank the CRIFC for the provision of the experimental fields and other research facilities.
References
Ahloowalia, B., Maluszynski, M., & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, 187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
Ahuja, S., Kumar, M., Kumar, P., Gupta, V., Singhal, R., Yadav, A., & Singh, B. (2014). Metabolic and biochemical changes caused by gamma irradiation in plants. Journal of Radioanalytical and Nuclear Chemistry, 300, 199-212. https://doi.org/10.1007/s10967-014-2969-5
Ahumada-Flores, S., Briceño-Zamora, M. F., García-Montoya, J. A., López-Cázarez, C., Pereo-Galvez, A. E., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2020). Gamma radiosensitivity study on wheat (Triticum turgidum ssp. durum). Open Agriculture, 5(1), 558-562. https://doi.org/10.1016/j.apradiso.2020.109490
Akgün, İ., Karakoca, T. A., & Karaman, R. (2019). Farklı Gamma Işını Dozlarının İki Sıralı Arpada (Hordeum vulgare L.) Bazı Tarımsal Özellikler Üzerine Etkisi. Turkish Journal of Agriculture-Food Science and Technology, 7, 86-92. https://doi.org/10.24925/turjaf.v7isp2.86-92.3152
Ashmawy, H., Azzam, C. R., & Fateh, H. S. (2016). Variability, heritability and expected genetic advance in barley genotypes irradiated with gamma rays in M3, M4 and M5 generations. Egyptian Journal of Plant Breeding, 203(3795), 1-17.
Ataei, M. (2006). Path analysis of barley (Hordeum vulgare L.) yield. Journal of Agricultural Sci-ence, 12, 227-232.
Barboza, L., Effgen, S., Alonso-Blanco, C., Kooke, R., Keurentjes, J. J., Koornneef, M., & Alcázar, R. (2013). Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proceedings of the National Academy of Sciences, 110(39), 15818-15823. https://doi.org/10.1073/pnas.1314979110
Bitarishvili, S., Volkova, P. Y., & Geras’ kin, S. (2018). γ-Irradiation of barley seeds and its effect on the phytohormonal status of seedlings. Russian Journal of Plant Physiology, 65(3), 446-454. https://doi.org/10.1134/S1021443718020024
Chaudhary, J., Deshmukh, R., & Sonah, H. (2019). Mutagenesis approaches and their role in crop improvement. In (Vol. 8, pp. 467): Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/plants8110467
Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You, M., & Sun, Q. (2015). Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC genetics, 16(1), 1-9. https://doi.org/10.1186/s12863-015-0285-x
Choi, H.-I., Han, S. M., Jo, Y. D., Hong, M. J., Kim, S. H., & Kim, J.-B. (2021). Effects of acute and chronic gamma irradiation on the cell biology and physiology of rice plants. Plants, 10(3), 439. https://doi.org/10.3390/plants10030439
Dickin, E., Steele, K., Edwards-Jones, G., & Wright, D. (2012). Agronomic diversity of naked barley (Hordeum vulgare L.): a potential resource for breeding new food barley for Europe. Euphytica, 184, 85-99. https://doi.org/10.1007/s10681-011-0567-y
Duan, R., Xiong, H., Wang, A., & Chen, G. (2015). Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare L.). International journal of molecular sciences, 16(6), 14181-14193. https://doi.org/10.3390/ijms160614181
Dyulgerova, B., & Dyulgerov, N. (2020). Evaluation of hulless mutants of winter barley. Agriculturae Conspectus Scientificus, 85(3), 203-209.
El-Degwy, I., & Hathout, M. (2014). Influence of gamma rays on the performance and genetic parameters for grain yield and yield attributes of bread wheat. Egyptian Journal Agronomy, 36(1), 41-55.
FAOSTAT, (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL Access date: 06.02.2023
Gowthami, R., Vanniarajan, C., Souframanien, J., & Pillai, M. A. (2017). Comparison of radiosensitivity of two rice (Oryza sativa L.) varieties to gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding, 8(3), 732-741. https://doi.org/10.5958/0975-928X.2017.00111.9
Gruszka, D., Szarejko, I., & Maluszynski, M. (2011). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of applied genetics, 52, 257-268. https://doi.org/10.1007/s13353-011-0031-7
Jilal, A., Grando, S., Henry, R. J., Rice, N., & Ceccarelli, S. (2013). Agronomic and quality attributes of worldwide primitive barley subspecies. Advance in barley sciences: Proceedings of 11th international barley genetics symposium. https://doi.org/10.1007/978-94-007-4682-4
Karakoca, T. A., & Akgün, I. (2020). Determination of the mutagenic effect of different gamma radiation doses applications on some agricultural characteristics of barley in M2 generation. Süley-man Demirel University Journal of Natural and Applied Sciences, 24 (1), 96-104. https://doi.org/10.19113/sdufenbed.580095
Khah, M. A., & Verma, R. C. (2015). Assessment of the effects of gamma radiations on various morphological and agronomic traits of common wheat (Triticum aestivum L.) var. WH-147. European Journal of Experimental Biology, 5(7), 6-11.
Lavinscky, M., Souza, M., Silva, G., & Melo, C. (2017). Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding. Genetics and Molecular Research, 16(3). https://doi.org/10.4238/gmr16039582
Maluszynski, M., Szarejko, I., Bhatia, C., Nichterlein, K., & Lagoda, P. J. (2009). Methodologies for generating variability. Part 4: Mutation techniques. In Ceccarelli S, Guimaraes, E.P. and Weltzien, E. (Eds). Plant breeding and farmer participation, (pp 159-194). Food and Agri-culture Organization of the United Nations (FAO), Rome, Italy
Marcu, D., Damian, G., Cosma, C., & Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of biological physics, 39, 625-634. https://doi.org/10.1007/s10867-013-9322-z
Marzec, M., & Alqudah, A. M. (2018). Key hormonal components regulate agronomically important traits in barley. International journal of molecular sciences, 19(3), 795. https://doi.org/10.3390/ijms19030795
Meints, B., Vallejos, C., & Hayes, P. (2021). Multi-use naked barley: A new frontier. Journal of Cereal Science, 102, 103370. https://doi.org/10.1016/j.jcs.2021.103370
Montgomery, D. C. (2013). Design and analysis of experiments (8th Edition). John Wiley & Sons, Inc. Newyork
Nazarenko, M., & Lykholat, T. (2020). Variability at winter wheat varieties first generation which obtained mutagen action. Ecology and Noospherology, 31(2), 77-81. https://doi.org/10.15421/032012
Nielen, S., Forster, B., & Heslop-Harrison, J. (2018). Mutagen effects in the first generation after seed treatment: Biological effects of mutation treatments. In Spencer-Lopes, M. Forster, B.P. & Jankuloski L. (Eds.). FAO/IAEA Manual on Mutation Breeding-Third edition., Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
Okagaki, R. J., Haaning, A., Bilgic, H., Heinen, S., Druka, A., Bayer, M., Waugh, R., & Muehlbauer, G. J. (2018). ELIGULUM-A regulates lateral branch and leaf development in barley. Plant physiology, 176(4), 2750-2760. https://doi.org/10.1104/pp.17.01459
Pagliarini, M. S. (2000). Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular biology, 23, 997-1002. https://doi.org/10.1590/S1415-47572000000400045
Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022). Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants, 11(10), 1322. https://doi.org/10.3390/plants11101322
Rybiñski, W., Pietruszewski, S., & Kornarzyñski, K. (2003). Influence of magnetic field with chemomutagen and gamma rays on the variability of yielding parameters in barley (Hor-deum vulgare L.). International Agrophysics,17 (2), 85-91.
Sarkar, S., Perras, M. R., Falk, D. E., Zhang, R., Pharis, R. P., & Austin Fletcher, R. (2004). Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. Plant Growth Regulation, 42, 125-135.m https://doi.org/10.1023/B:GROW.0000017492.56792.64
Sayed Hussien Elsayed, A., Tavakol, E., Horner, D. S., Muñoz Amatriaín, M., Muehlbauer, G. J., & Rossini, L. (2014). Genetics of tillering in rice and barley. THE PLANT GENOME, 7(1).
Shu, Q.-Y., Forster, B. P., Nakagawa, H., & Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CABI International, Cambridge, MA
Singh, B., Ahuja, S., Singhal, R., & Venu Babu, P. (2013). Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. Journal of Radioanalytical and Nuclear Chemistry, 298, 249-257.
Singh, B., & Datta, P. (2010). Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiation Physics and Chemistry, 79(2), 139-143. https://doi.org/10.1016/j.radphyschem.2009.05.025
Spencer-Lopes, M. M., Forster, B. P., & Jankuloski, L. (2018). FAO/IAEA Manual on Mutation Breeding-Third edition., Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
Stoilov, L., Georgieva, M., Manova, V., Liu, L., & Gecheff, K. (2013). Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage. Mutagenesis, 28(2), 153-160. https://doi.org/10.1093/mutage/ges065
Suprasanna, P., Mirajkar, S., & Bhagwat, S. (2015). Induced mutations and crop improvement. Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement, 593-617. https://doi.org/10.1007/978-81-322-2286-6_23
Şenay, A., & Çiftçi, C. (2005). Effects of Seperate and Combined Treatments of Different Doses of Gamma Rays and Ems on First Developping Stage of Durum Wheat (Triticum durum Desf.) in M1 Generations. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 14(1-2), 23-31.
Terzi, V., Tumino, G., Pagani, D., Rizza, F., Ghizzoni, R., Morcia, C., & Stanca, A. M. (2017). Barley developmental mutants: The high road to understand the cereal spike morphology. Diversity, 9(2), 21. https://doi.org/10.3390/d9020021
Ullrich, S.E. (2011). Significance, adaptation, production, and trade of barley. In Ullrich, S.E (Ed.), Barley (pp. 3-13), Blackwell Publishing Ltd., Chichester, UK.
Ulukapi, K., & Nasircilar, A. G. (2015). Developments of gamma ray application on mutation breeding studies in recent years. International Conference on Advances in Agricultural, Biological & Environmental Sciences. https://doi.org/10.15242/IICBE.C0715044
Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: the basis for breeding a new super plant. Frontiers in plant science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326
Wang, H., Chen, W., Eggert, K., Charnikhova, T., Bouwmeester, H., Schweizer, P., Hajirezaei, M. R., Seiler, C., Sreenivasulu, N., & von Wirén, N. (2018). Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 69(16), 3883-3898. https://doi.org/10.1093/jxb/ery200
Ye, L., Wang, Y., Long, L., Luo, H., Shen, Q., Broughton, S., Wu, D., Shu, X., Dai, F., & Li, C. (2019). A trypsin family protein gene controls tillering and leaf shape in barley. Plant physiology, 181(2), 701-713. https://doi.org/10.1104/pp.19.00717
Zeng, Y., Pu, X., Du, J., Yang, X., Li, X., Mandal, M., Nabi, S., Yang, T., & Yang, J. (2020). Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxidative medicine and cellular longevity, 2020. https://doi.org/10.1155/2020/3836172
Year 2023,
Volume: 7 Issue: 3, 650 - 659, 30.09.2023
Ahloowalia, B., Maluszynski, M., & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135, 187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
Ahuja, S., Kumar, M., Kumar, P., Gupta, V., Singhal, R., Yadav, A., & Singh, B. (2014). Metabolic and biochemical changes caused by gamma irradiation in plants. Journal of Radioanalytical and Nuclear Chemistry, 300, 199-212. https://doi.org/10.1007/s10967-014-2969-5
Ahumada-Flores, S., Briceño-Zamora, M. F., García-Montoya, J. A., López-Cázarez, C., Pereo-Galvez, A. E., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2020). Gamma radiosensitivity study on wheat (Triticum turgidum ssp. durum). Open Agriculture, 5(1), 558-562. https://doi.org/10.1016/j.apradiso.2020.109490
Akgün, İ., Karakoca, T. A., & Karaman, R. (2019). Farklı Gamma Işını Dozlarının İki Sıralı Arpada (Hordeum vulgare L.) Bazı Tarımsal Özellikler Üzerine Etkisi. Turkish Journal of Agriculture-Food Science and Technology, 7, 86-92. https://doi.org/10.24925/turjaf.v7isp2.86-92.3152
Ashmawy, H., Azzam, C. R., & Fateh, H. S. (2016). Variability, heritability and expected genetic advance in barley genotypes irradiated with gamma rays in M3, M4 and M5 generations. Egyptian Journal of Plant Breeding, 203(3795), 1-17.
Ataei, M. (2006). Path analysis of barley (Hordeum vulgare L.) yield. Journal of Agricultural Sci-ence, 12, 227-232.
Barboza, L., Effgen, S., Alonso-Blanco, C., Kooke, R., Keurentjes, J. J., Koornneef, M., & Alcázar, R. (2013). Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proceedings of the National Academy of Sciences, 110(39), 15818-15823. https://doi.org/10.1073/pnas.1314979110
Bitarishvili, S., Volkova, P. Y., & Geras’ kin, S. (2018). γ-Irradiation of barley seeds and its effect on the phytohormonal status of seedlings. Russian Journal of Plant Physiology, 65(3), 446-454. https://doi.org/10.1134/S1021443718020024
Chaudhary, J., Deshmukh, R., & Sonah, H. (2019). Mutagenesis approaches and their role in crop improvement. In (Vol. 8, pp. 467): Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/plants8110467
Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You, M., & Sun, Q. (2015). Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC genetics, 16(1), 1-9. https://doi.org/10.1186/s12863-015-0285-x
Choi, H.-I., Han, S. M., Jo, Y. D., Hong, M. J., Kim, S. H., & Kim, J.-B. (2021). Effects of acute and chronic gamma irradiation on the cell biology and physiology of rice plants. Plants, 10(3), 439. https://doi.org/10.3390/plants10030439
Dickin, E., Steele, K., Edwards-Jones, G., & Wright, D. (2012). Agronomic diversity of naked barley (Hordeum vulgare L.): a potential resource for breeding new food barley for Europe. Euphytica, 184, 85-99. https://doi.org/10.1007/s10681-011-0567-y
Duan, R., Xiong, H., Wang, A., & Chen, G. (2015). Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare L.). International journal of molecular sciences, 16(6), 14181-14193. https://doi.org/10.3390/ijms160614181
Dyulgerova, B., & Dyulgerov, N. (2020). Evaluation of hulless mutants of winter barley. Agriculturae Conspectus Scientificus, 85(3), 203-209.
El-Degwy, I., & Hathout, M. (2014). Influence of gamma rays on the performance and genetic parameters for grain yield and yield attributes of bread wheat. Egyptian Journal Agronomy, 36(1), 41-55.
FAOSTAT, (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL Access date: 06.02.2023
Gowthami, R., Vanniarajan, C., Souframanien, J., & Pillai, M. A. (2017). Comparison of radiosensitivity of two rice (Oryza sativa L.) varieties to gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding, 8(3), 732-741. https://doi.org/10.5958/0975-928X.2017.00111.9
Gruszka, D., Szarejko, I., & Maluszynski, M. (2011). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of applied genetics, 52, 257-268. https://doi.org/10.1007/s13353-011-0031-7
Jilal, A., Grando, S., Henry, R. J., Rice, N., & Ceccarelli, S. (2013). Agronomic and quality attributes of worldwide primitive barley subspecies. Advance in barley sciences: Proceedings of 11th international barley genetics symposium. https://doi.org/10.1007/978-94-007-4682-4
Karakoca, T. A., & Akgün, I. (2020). Determination of the mutagenic effect of different gamma radiation doses applications on some agricultural characteristics of barley in M2 generation. Süley-man Demirel University Journal of Natural and Applied Sciences, 24 (1), 96-104. https://doi.org/10.19113/sdufenbed.580095
Khah, M. A., & Verma, R. C. (2015). Assessment of the effects of gamma radiations on various morphological and agronomic traits of common wheat (Triticum aestivum L.) var. WH-147. European Journal of Experimental Biology, 5(7), 6-11.
Lavinscky, M., Souza, M., Silva, G., & Melo, C. (2017). Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding. Genetics and Molecular Research, 16(3). https://doi.org/10.4238/gmr16039582
Maluszynski, M., Szarejko, I., Bhatia, C., Nichterlein, K., & Lagoda, P. J. (2009). Methodologies for generating variability. Part 4: Mutation techniques. In Ceccarelli S, Guimaraes, E.P. and Weltzien, E. (Eds). Plant breeding and farmer participation, (pp 159-194). Food and Agri-culture Organization of the United Nations (FAO), Rome, Italy
Marcu, D., Damian, G., Cosma, C., & Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of biological physics, 39, 625-634. https://doi.org/10.1007/s10867-013-9322-z
Marzec, M., & Alqudah, A. M. (2018). Key hormonal components regulate agronomically important traits in barley. International journal of molecular sciences, 19(3), 795. https://doi.org/10.3390/ijms19030795
Meints, B., Vallejos, C., & Hayes, P. (2021). Multi-use naked barley: A new frontier. Journal of Cereal Science, 102, 103370. https://doi.org/10.1016/j.jcs.2021.103370
Montgomery, D. C. (2013). Design and analysis of experiments (8th Edition). John Wiley & Sons, Inc. Newyork
Nazarenko, M., & Lykholat, T. (2020). Variability at winter wheat varieties first generation which obtained mutagen action. Ecology and Noospherology, 31(2), 77-81. https://doi.org/10.15421/032012
Nielen, S., Forster, B., & Heslop-Harrison, J. (2018). Mutagen effects in the first generation after seed treatment: Biological effects of mutation treatments. In Spencer-Lopes, M. Forster, B.P. & Jankuloski L. (Eds.). FAO/IAEA Manual on Mutation Breeding-Third edition., Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
Okagaki, R. J., Haaning, A., Bilgic, H., Heinen, S., Druka, A., Bayer, M., Waugh, R., & Muehlbauer, G. J. (2018). ELIGULUM-A regulates lateral branch and leaf development in barley. Plant physiology, 176(4), 2750-2760. https://doi.org/10.1104/pp.17.01459
Pagliarini, M. S. (2000). Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular biology, 23, 997-1002. https://doi.org/10.1590/S1415-47572000000400045
Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022). Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants, 11(10), 1322. https://doi.org/10.3390/plants11101322
Rybiñski, W., Pietruszewski, S., & Kornarzyñski, K. (2003). Influence of magnetic field with chemomutagen and gamma rays on the variability of yielding parameters in barley (Hor-deum vulgare L.). International Agrophysics,17 (2), 85-91.
Sarkar, S., Perras, M. R., Falk, D. E., Zhang, R., Pharis, R. P., & Austin Fletcher, R. (2004). Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. Plant Growth Regulation, 42, 125-135.m https://doi.org/10.1023/B:GROW.0000017492.56792.64
Sayed Hussien Elsayed, A., Tavakol, E., Horner, D. S., Muñoz Amatriaín, M., Muehlbauer, G. J., & Rossini, L. (2014). Genetics of tillering in rice and barley. THE PLANT GENOME, 7(1).
Shu, Q.-Y., Forster, B. P., Nakagawa, H., & Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CABI International, Cambridge, MA
Singh, B., Ahuja, S., Singhal, R., & Venu Babu, P. (2013). Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. Journal of Radioanalytical and Nuclear Chemistry, 298, 249-257.
Singh, B., & Datta, P. (2010). Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiation Physics and Chemistry, 79(2), 139-143. https://doi.org/10.1016/j.radphyschem.2009.05.025
Spencer-Lopes, M. M., Forster, B. P., & Jankuloski, L. (2018). FAO/IAEA Manual on Mutation Breeding-Third edition., Food and Agriculture Organization of the United Nations. Rome, Italy. 301 pp.
Stoilov, L., Georgieva, M., Manova, V., Liu, L., & Gecheff, K. (2013). Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage. Mutagenesis, 28(2), 153-160. https://doi.org/10.1093/mutage/ges065
Suprasanna, P., Mirajkar, S., & Bhagwat, S. (2015). Induced mutations and crop improvement. Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement, 593-617. https://doi.org/10.1007/978-81-322-2286-6_23
Şenay, A., & Çiftçi, C. (2005). Effects of Seperate and Combined Treatments of Different Doses of Gamma Rays and Ems on First Developping Stage of Durum Wheat (Triticum durum Desf.) in M1 Generations. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 14(1-2), 23-31.
Terzi, V., Tumino, G., Pagani, D., Rizza, F., Ghizzoni, R., Morcia, C., & Stanca, A. M. (2017). Barley developmental mutants: The high road to understand the cereal spike morphology. Diversity, 9(2), 21. https://doi.org/10.3390/d9020021
Ullrich, S.E. (2011). Significance, adaptation, production, and trade of barley. In Ullrich, S.E (Ed.), Barley (pp. 3-13), Blackwell Publishing Ltd., Chichester, UK.
Ulukapi, K., & Nasircilar, A. G. (2015). Developments of gamma ray application on mutation breeding studies in recent years. International Conference on Advances in Agricultural, Biological & Environmental Sciences. https://doi.org/10.15242/IICBE.C0715044
Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: the basis for breeding a new super plant. Frontiers in plant science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326
Wang, H., Chen, W., Eggert, K., Charnikhova, T., Bouwmeester, H., Schweizer, P., Hajirezaei, M. R., Seiler, C., Sreenivasulu, N., & von Wirén, N. (2018). Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 69(16), 3883-3898. https://doi.org/10.1093/jxb/ery200
Ye, L., Wang, Y., Long, L., Luo, H., Shen, Q., Broughton, S., Wu, D., Shu, X., Dai, F., & Li, C. (2019). A trypsin family protein gene controls tillering and leaf shape in barley. Plant physiology, 181(2), 701-713. https://doi.org/10.1104/pp.19.00717
Zeng, Y., Pu, X., Du, J., Yang, X., Li, X., Mandal, M., Nabi, S., Yang, T., & Yang, J. (2020). Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxidative medicine and cellular longevity, 2020. https://doi.org/10.1155/2020/3836172
Ergün, N., Akdogan, G., & Ünver İkincikarakaya, S. (2023). Impact of gamma radiation on the agronomic properties of naked barley genotypes. International Journal of Agriculture Environment and Food Sciences, 7(3), 650-659. https://doi.org/10.31015/jaefs.2023.3.19
The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.