Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 3, 660 - 668, 30.09.2023
https://doi.org/10.31015/jaefs.2023.3.20

Öz

Kaynakça

  • Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
  • Alsataf, S., Başyiğit, B., & Karaaslan, M. (2021). Multivariate analyses of the antioxidant, antidiabetic, antimicrobial activity of pomegranate tissues with respect to pomegranate juice. Waste and Biomass Valorization, 12(11), 5909–5921. https://doi.org/10.1007/s12649-021-01427-9
  • Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2016). Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 64(34), 6584-6604. https://doi.org/10.1021/acs.jafc.6b02950
  • Arnao, M. B., Cano, A., & Acosta, M. (1999). Methods to measure the antioxidant activity in plant material. A comparative discussion. Free Radical Research, 31(1), 89–96. https://doi.org/10.1080/10715769900301371
  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160, 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44(9). https://doi.org/10.1111/jfpp.14692
  • Bernatoniene, J., Jakstas, V., & Kopustinskiene, D. M. (2023). Phenolic compounds of Rhodiola rosea L. as the potential alternative therapy in the treatment of chronic diseases. International Journal of Molecular Sciences, 24(15), 12293. https://doi.org/10.3390/ijms241512293
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Budhathoki, U., Gartoulla, K., & Shakya, S. (2016). Formulation and evaluation of transdermal patches of atenolol. Indonesian Journal of Pharmacy, 27(4), 196.
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • de Araújo, K., de Lima, A., Silva, J., Rodrigues, L., Amorim, A., Quelemes, P., dos Santos, R., Rocha, J., de Andrades, É., Leite, J., Mancini-Filho, J., & da Trindade, R. (2014). Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of Euphorbia tirucalli L. antioxidants, 3(1), 159–175. https://doi.org/10.3390/antiox3010159
  • Gad, M. Z., El-Sawalhi, M. M., Ismail, M. F., & El-Tanbouly, N. D. (2006). Biochemical study of the anti-diabetic action of the egyptian plants fenugreek and balanites. Molecular and Cellular Biochemistry, 281(1–2), 173–183. https://doi.org/10.1007/s11010-006-0996-4
  • Huang, B., Ke, H., He, J., Ban, X., Zeng, H., & Wang, Y. (2011). Extracts of Halenia elliptica exhibit antioxidant properties in vitro and in vivo. Food and Chemical Toxicology, 49(1), 185–190. https://doi.org/10.1016/j.fct.2010.10.015
  • Keskin, D., & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13–18. https://doi.org/10.31015/jaefs.2022.1.3
  • Le, N. T. M., Cuong, D. X., Thinh, P. Van, Minh, T. N., Manh, T. D., Duong, T.-H., Minh, T. T., Le, & Oanh, V. T. T. (2021). Phytochemical Screening and Evaluation of Antioxidant Properties and Antimicrobial Activity against Xanthomonas axonopodis of Euphorbia tirucalli Extracts in Binh Thuan Province, Vietnam. Molecules, 26(4), 941. https://doi.org/10.3390/molecules26040941
  • Lee, J., Noh, S., Lim, S., & Kim, B. (2021). Plant extracts for Type 2 diabetes: from traditional medicine to modern drug discovery. Antioxidants, 10(1), 81. https://doi.org/10.3390/antiox10010081
  • Maphetu, N., Unuofin, J. O., Masuku, N. P., Olisah, C., & Lebelo, S. L. (2022). Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomedicine & Pharmacotherapy, 153, 113256. https://doi.org/10.1016/j.biopha.2022.113256
  • McCreight, L. J., Bailey, C. J., Pearson, E. R. (2016). Metformin and the gastrointestinal tract. Diabetologia, 59(3), 426–435. https://doi.org/10.1007/s00125-015-3844-9
  • McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53(7), 2760-2766. https://doi.org/10.1021/jf0489926
  • Mohammed, F. A., Rao, A.S., Ahemad, S. R., & Ibrahim, M. (2012). Phytochemical studies and antioxidant activity of melia azedarach linn leaves by dpph scavenging assay. International Journal of Pharmaceutical Applications, 3(1), 271–276.
  • Munro, B., Vuong, Q., Chalmers, A., Goldsmith, C., Bowyer, M., & Scarlett, C. (2015). Phytochemical, antioxidant and anti-Cancer properties of Euphorbia tirucalli methanolic and aqueous extracts. Antioxidants, 4(4), 647–661. https://doi.org/10.3390/antiox4040647
  • Orabi, M. A. A., Yoshimura, M., Amakura, Y., & Hatano, T. (2015). Ellagitannins, gallotannins, and gallo-ellagitannins from the galls of Tamarix aphylla. Fitoterapia, 104, 55–63. https://doi.org/10.1016/j.fitote.2015.05.008
  • Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R., & Singh, B. P. (2015). In Vitro and In Vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic Actinomycetes associates with medicinal plants. PLOS ONE, 10(9), e0139468. https://doi.org/10.1371/journal.pone.0139468
  • Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 127(S 01), S1–S7. https://doi.org/10.1055/a-1018-9078
  • Rajasekar, S., Park, D. J., Park, C., Park, S., Park, Y. H., Kim, S. T., Choi, Y. H., & Choi, Y. W. (2012). In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. Journal of Ethnopharmacology, 144(2), 335–345. https://doi.org/10.1016/j.jep.2012.09.017
  • Özbilgin, S. (2012). Uses of some euphorbia species in traditional medicine in Turkey and their biological activities. Turkish Journal of Pharmaceutical Sciences, 241–256.
  • Salehin, S., Rasmussen, P., Mai, S., Mushtaq, M., Agarwal, M., Hasan, S. M., Salehin, S., Raja, M., Gilani, S., & Khalife, W. I. (2023). Plant Based Diet and Its Effect on Cardiovascular Disease. International Journal of Environmental Research and Public Health, 20(4), 3337. https://doi.org/10.3390/ijerph20043337
  • Shahidi, F., & Yeo, J. (2016). Insoluble-Bound phenolics in food. Molecules, 21(9), 1216. https://doi.org/10.3390/molecules21091216
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Soliman, M. S. M., Abdella, A., Khidr, Y. A., Hassan, G. O. O., Al-Saman, M. A., & Elsanhoty, R. M. (2021). Pharmacological activities and characterization of phenolic and flavonoid compounds in methanolic extract of Euphorbia cuneata Vahl Aerial Parts. Molecules, 26(23), 7345. https://doi.org/10.3390/molecules26237345
  • Subramanian, S., Bhuvaneshwari, S., & Prasath, G. (2011). Antidiabetic and antioxidant potentials of Euphorbia hirta leaves extract studied in streptozotocin-induced experimental diabetes in rats. General Physiology and Biophysics, 30(3), 278–285. https://doi.org/10.4149/gpb_2011_03_278
  • Temiz, M. A. (2021). Investigation of phenolic composition, antioxidant capacity, and antidiabetic effect of Ornithogalum lanceolatum L.: An in vitro study. International Journal of Secondary Metabolite, 8(2), 94–103. https://doi.org/10.21448/ijsm.861904
  • Wu, S., Shen, D., Wang, R., Li, Q., Mo, R., Zheng, Y., Zhou, Y., & Liu, Y. (2021). Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chemistry, 350, 129217. https://doi.org/10.1016/j.foodchem.2021.129217
  • Willis, R. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst, 123(3), 435-439. https://doi.org/10.1039/A706862J
  • Yener, İ., Ölmez, Ö. T., Ertas, A., Yilmaz, M. A., Firat, M., Kandemir, S. İ., Öztürk, M., Kolak, U., & Temel, H. (2018). A detailed study on chemical and biological profile of nine Euphorbia species from Turkey with chemometric approach: Remarkable cytotoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Industrial Crops and Products, 123, 442–453. https://doi.org/10.1016/j.indcrop.2018.07.007 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities

Yıl 2023, Cilt: 7 Sayı: 3, 660 - 668, 30.09.2023
https://doi.org/10.31015/jaefs.2023.3.20

Öz

Euphorbia plants have long been used as herbs in numerous traditional medicines in Anatolia. They were employed for the treatment of microbial infections, skin wounds and gastrointestinal diseases. Euphorbia species are rich sources of phenolic acids, flavonoids and many other natural compounds with antioxidant effects. In the context of this study the phenolic content, antioxidant activity and antidiabetic effect of Euphorbia cyparissias (E. cyparissias) leaf, flower and stalk extracts were evaluated. Three separate phenolic fractions namely free, esterified and bound extracts were prepared from leaf, stalk, and flower organs. Enzymatic treatment was utilized to remove bound phenolics from the cellular structures. A total of nine different extracts obtained from E. cyparissias organs. The highest phenolic fraction was bound phenolics in all three assayed extracts. The highest total phenolic compound (TPC) was found as bound phenolic fraction form in leaf extracts (21.088±0.32 mg GAE/g). Similarly the leaf samples displayed the highest total flavonoid contents (TFC) as bound form (1.798±0.02 mg CE/g). Four different methods were employed to determine the antioxidant potencies of the extracts. In parallel with the TPC and TFC results the bound fraction of leaf extract displayed the highest antioxidant capacities when evaluated with DPPH, ABTS and CUPRAC assays. According to FRAP analysis, free phenolic compounds of the leaves had the highest antioxidant potential. Free, esterified and bound phenolic compound fractions were all displayed inhibitory activity against α-amylase and α-glycosidase enzymes which is associated with their antidiabetic effects. Especially esterified phenolic compounds displayed significant inhibitory activity against α-amylase while bound fractions found in stalks and flowers exhibited stronger α-glycosidase activities.

Kaynakça

  • Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
  • Alsataf, S., Başyiğit, B., & Karaaslan, M. (2021). Multivariate analyses of the antioxidant, antidiabetic, antimicrobial activity of pomegranate tissues with respect to pomegranate juice. Waste and Biomass Valorization, 12(11), 5909–5921. https://doi.org/10.1007/s12649-021-01427-9
  • Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2016). Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 64(34), 6584-6604. https://doi.org/10.1021/acs.jafc.6b02950
  • Arnao, M. B., Cano, A., & Acosta, M. (1999). Methods to measure the antioxidant activity in plant material. A comparative discussion. Free Radical Research, 31(1), 89–96. https://doi.org/10.1080/10715769900301371
  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160, 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44(9). https://doi.org/10.1111/jfpp.14692
  • Bernatoniene, J., Jakstas, V., & Kopustinskiene, D. M. (2023). Phenolic compounds of Rhodiola rosea L. as the potential alternative therapy in the treatment of chronic diseases. International Journal of Molecular Sciences, 24(15), 12293. https://doi.org/10.3390/ijms241512293
  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Budhathoki, U., Gartoulla, K., & Shakya, S. (2016). Formulation and evaluation of transdermal patches of atenolol. Indonesian Journal of Pharmacy, 27(4), 196.
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • de Araújo, K., de Lima, A., Silva, J., Rodrigues, L., Amorim, A., Quelemes, P., dos Santos, R., Rocha, J., de Andrades, É., Leite, J., Mancini-Filho, J., & da Trindade, R. (2014). Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of Euphorbia tirucalli L. antioxidants, 3(1), 159–175. https://doi.org/10.3390/antiox3010159
  • Gad, M. Z., El-Sawalhi, M. M., Ismail, M. F., & El-Tanbouly, N. D. (2006). Biochemical study of the anti-diabetic action of the egyptian plants fenugreek and balanites. Molecular and Cellular Biochemistry, 281(1–2), 173–183. https://doi.org/10.1007/s11010-006-0996-4
  • Huang, B., Ke, H., He, J., Ban, X., Zeng, H., & Wang, Y. (2011). Extracts of Halenia elliptica exhibit antioxidant properties in vitro and in vivo. Food and Chemical Toxicology, 49(1), 185–190. https://doi.org/10.1016/j.fct.2010.10.015
  • Keskin, D., & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis). International Journal of Agriculture Environment and Food Sciences, 6(1), 13–18. https://doi.org/10.31015/jaefs.2022.1.3
  • Le, N. T. M., Cuong, D. X., Thinh, P. Van, Minh, T. N., Manh, T. D., Duong, T.-H., Minh, T. T., Le, & Oanh, V. T. T. (2021). Phytochemical Screening and Evaluation of Antioxidant Properties and Antimicrobial Activity against Xanthomonas axonopodis of Euphorbia tirucalli Extracts in Binh Thuan Province, Vietnam. Molecules, 26(4), 941. https://doi.org/10.3390/molecules26040941
  • Lee, J., Noh, S., Lim, S., & Kim, B. (2021). Plant extracts for Type 2 diabetes: from traditional medicine to modern drug discovery. Antioxidants, 10(1), 81. https://doi.org/10.3390/antiox10010081
  • Maphetu, N., Unuofin, J. O., Masuku, N. P., Olisah, C., & Lebelo, S. L. (2022). Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomedicine & Pharmacotherapy, 153, 113256. https://doi.org/10.1016/j.biopha.2022.113256
  • McCreight, L. J., Bailey, C. J., Pearson, E. R. (2016). Metformin and the gastrointestinal tract. Diabetologia, 59(3), 426–435. https://doi.org/10.1007/s00125-015-3844-9
  • McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53(7), 2760-2766. https://doi.org/10.1021/jf0489926
  • Mohammed, F. A., Rao, A.S., Ahemad, S. R., & Ibrahim, M. (2012). Phytochemical studies and antioxidant activity of melia azedarach linn leaves by dpph scavenging assay. International Journal of Pharmaceutical Applications, 3(1), 271–276.
  • Munro, B., Vuong, Q., Chalmers, A., Goldsmith, C., Bowyer, M., & Scarlett, C. (2015). Phytochemical, antioxidant and anti-Cancer properties of Euphorbia tirucalli methanolic and aqueous extracts. Antioxidants, 4(4), 647–661. https://doi.org/10.3390/antiox4040647
  • Orabi, M. A. A., Yoshimura, M., Amakura, Y., & Hatano, T. (2015). Ellagitannins, gallotannins, and gallo-ellagitannins from the galls of Tamarix aphylla. Fitoterapia, 104, 55–63. https://doi.org/10.1016/j.fitote.2015.05.008
  • Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R., & Singh, B. P. (2015). In Vitro and In Vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic Actinomycetes associates with medicinal plants. PLOS ONE, 10(9), e0139468. https://doi.org/10.1371/journal.pone.0139468
  • Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 127(S 01), S1–S7. https://doi.org/10.1055/a-1018-9078
  • Rajasekar, S., Park, D. J., Park, C., Park, S., Park, Y. H., Kim, S. T., Choi, Y. H., & Choi, Y. W. (2012). In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. Journal of Ethnopharmacology, 144(2), 335–345. https://doi.org/10.1016/j.jep.2012.09.017
  • Özbilgin, S. (2012). Uses of some euphorbia species in traditional medicine in Turkey and their biological activities. Turkish Journal of Pharmaceutical Sciences, 241–256.
  • Salehin, S., Rasmussen, P., Mai, S., Mushtaq, M., Agarwal, M., Hasan, S. M., Salehin, S., Raja, M., Gilani, S., & Khalife, W. I. (2023). Plant Based Diet and Its Effect on Cardiovascular Disease. International Journal of Environmental Research and Public Health, 20(4), 3337. https://doi.org/10.3390/ijerph20043337
  • Shahidi, F., & Yeo, J. (2016). Insoluble-Bound phenolics in food. Molecules, 21(9), 1216. https://doi.org/10.3390/molecules21091216
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Soliman, M. S. M., Abdella, A., Khidr, Y. A., Hassan, G. O. O., Al-Saman, M. A., & Elsanhoty, R. M. (2021). Pharmacological activities and characterization of phenolic and flavonoid compounds in methanolic extract of Euphorbia cuneata Vahl Aerial Parts. Molecules, 26(23), 7345. https://doi.org/10.3390/molecules26237345
  • Subramanian, S., Bhuvaneshwari, S., & Prasath, G. (2011). Antidiabetic and antioxidant potentials of Euphorbia hirta leaves extract studied in streptozotocin-induced experimental diabetes in rats. General Physiology and Biophysics, 30(3), 278–285. https://doi.org/10.4149/gpb_2011_03_278
  • Temiz, M. A. (2021). Investigation of phenolic composition, antioxidant capacity, and antidiabetic effect of Ornithogalum lanceolatum L.: An in vitro study. International Journal of Secondary Metabolite, 8(2), 94–103. https://doi.org/10.21448/ijsm.861904
  • Wu, S., Shen, D., Wang, R., Li, Q., Mo, R., Zheng, Y., Zhou, Y., & Liu, Y. (2021). Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chemistry, 350, 129217. https://doi.org/10.1016/j.foodchem.2021.129217
  • Willis, R. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst, 123(3), 435-439. https://doi.org/10.1039/A706862J
  • Yener, İ., Ölmez, Ö. T., Ertas, A., Yilmaz, M. A., Firat, M., Kandemir, S. İ., Öztürk, M., Kolak, U., & Temel, H. (2018). A detailed study on chemical and biological profile of nine Euphorbia species from Turkey with chemometric approach: Remarkable cytotoxicity of E. fistulasa and promising tannic acid content of E. eriophora. Industrial Crops and Products, 123, 442–453. https://doi.org/10.1016/j.indcrop.2018.07.007 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Meyve-Sebze Teknolojisi
Bölüm Makaleler
Yazarlar

Asliye Karaaslan 0000-0002-3834-0647

Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 18 Ağustos 2023
Kabul Tarihi 17 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 3

Kaynak Göster

APA Karaaslan, A. (2023). Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities. International Journal of Agriculture Environment and Food Sciences, 7(3), 660-668. https://doi.org/10.31015/jaefs.2023.3.20
AMA Karaaslan A. Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities. int. j. agric. environ. food sci. Eylül 2023;7(3):660-668. doi:10.31015/jaefs.2023.3.20
Chicago Karaaslan, Asliye. “Determination of Free, Esterified, Bound Bioactive Compound Contents of Euphorbia Cyparissias Organs and Their Biological Activities”. International Journal of Agriculture Environment and Food Sciences 7, sy. 3 (Eylül 2023): 660-68. https://doi.org/10.31015/jaefs.2023.3.20.
EndNote Karaaslan A (01 Eylül 2023) Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities. International Journal of Agriculture Environment and Food Sciences 7 3 660–668.
IEEE A. Karaaslan, “Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities”, int. j. agric. environ. food sci., c. 7, sy. 3, ss. 660–668, 2023, doi: 10.31015/jaefs.2023.3.20.
ISNAD Karaaslan, Asliye. “Determination of Free, Esterified, Bound Bioactive Compound Contents of Euphorbia Cyparissias Organs and Their Biological Activities”. International Journal of Agriculture Environment and Food Sciences 7/3 (Eylül 2023), 660-668. https://doi.org/10.31015/jaefs.2023.3.20.
JAMA Karaaslan A. Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities. int. j. agric. environ. food sci. 2023;7:660–668.
MLA Karaaslan, Asliye. “Determination of Free, Esterified, Bound Bioactive Compound Contents of Euphorbia Cyparissias Organs and Their Biological Activities”. International Journal of Agriculture Environment and Food Sciences, c. 7, sy. 3, 2023, ss. 660-8, doi:10.31015/jaefs.2023.3.20.
Vancouver Karaaslan A. Determination of free, esterified, bound bioactive compound contents of Euphorbia cyparissias organs and their biological activities. int. j. agric. environ. food sci. 2023;7(3):660-8.

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27