Araştırma Makalesi
BibTex RIS Kaynak Göster

Nijerya'nın Amukpe Deltası eyaletindeki Songhai'deki yağ palmiyesi bahçelerinin fizikokimyasal özelliklerinin değerlendirilmesi.

Yıl 2025, Cilt: 3 Sayı: 1, 15 - 24, 16.07.2025
https://doi.org/10.5281/zenodo.15971918

Öz

Yağ palmiyesi (Elaeis guineensis Jacq.), Arecaceae familyasından monokotiledon bir bitkidir ve Asya ve Afrika'nın önde gelen üreticiler olduğu, yağ üretimi için küresel olarak önemli bir üründür. Ancak, yağ palmiyesi plantasyonlarının genişlemesi, biyolojik çeşitliliğin kaybı, toprak bozulması ve ekosistem bozulması konusunda endişeleri artırmıştır. Bu çalışma, Nijerya'nın Delta Eyaletindeki Songhai Deltası Amukpe yağ palmiyesi plantasyonundaki toprakların fizikokimyasal özelliklerini değerlendirerek, toprak verimliliğini ve yağ palmiyesi yetiştiriciliğine uygunluğunu değerlendirmektedir. Toprak örnekleri, farklı derinliklerde (0-180 cm) beş pedonadan toplandı ve doku, pH, toprak organik karbonu (SOC), toplam azot (TN), kullanılabilir fosfor (AVP) ve değiştirilebilir katyonlar (K⁺, Ca²⁺, Mg²⁺, Na⁺) dahil olmak üzere fiziksel ve kimyasal özellikler açısından analiz edildi. Sonuçlar, üst horizonlarda kum parçacıklarının baskın olduğunu, drenajı teşvik ettiğini ancak besin maddesi sızma riskini artırdığını, daha derin horizonlardaki daha yüksek kil içeriğinin ise besin maddesinin tutulmasını artırdığını ortaya koydu. Toprak, yağ palmiyesi büyümesi için optimum aralıkta olan ancak potansiyel olarak besin maddesinin bulunabilirliğini sınırlayan güçlü asidik bir pH (4.76-5.32) sergiledi. SOC ve TN seviyeleri yüksekti ve iyi organik madde içeriğini gösterirken, AVP kritik eşiğin altındaydı ve fosfor takviyesini gerektiriyordu. Değiştirilebilir katyonlar, özellikle Ca²⁺, bol miktarda bulunuyordu ve toprak alkalinitesine katkıda bulunuyordu. Korelasyon analizi, toprak dokusu, SOC, TN ve pH arasındaki önemli ilişkileri vurgulayarak, kum ve siltin organik madde tutulması ve besin maddesinin bulunabilirliğindeki rolünü vurguladı. Bu bulgular, toprak verimliliğini optimize etmek ve sürdürülebilir yağ palmiyesi üretimini sağlamak için kireçleme ve fosfor gübrelemesi gibi hedeflenen toprak yönetimi uygulamalarına olan ihtiyacın altını çiziyor. Bu çalışma, toprak sağlığı hakkında kritik bilgiler sağlıyor ve yağ palmiyesi plantasyonlarında tarımsal üretkenliği iyileştirmek için uygulanabilir öneriler sunuyor.

Kaynakça

  • 1. Barcelos E, de Almeida Rios S, Cunha RNV, et al. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190.
  • 2. Food and Agriculture Organization (FAO). Food and agricultural data of the world. Production quantities of the oil palm fruit. FAOSTAT; 2020.
  • 3. FAOSTAT. Production quantities of oil palm fruit. FAOSTAT Database; 2023.
  • 4. USDA. Measuring the indirect land-use change associated with increased biofuel feedstock production. Report to Congress, AP-054. Washington, DC: U.S. Department of Agriculture; 2011.
  • 5. Putri EIK, Dharmawan AH, Hospes O, et al. The oil palm governance: Challenges of sustainability policy in Indonesia. Sustainability. 2022;14(3):1234.
  • 6. Castellanos-Navarrete A. Oil palm dispersal into protected wetlands: Human-environment dichotomies and the limits to governance in southern Mexico. Land Use Policy. 2021;103:105295.
  • 7. George KK, Fritz OT, Francis BTS, Roger KE. Identification of soil management factors for sustainable oil palm (Elaeis guineensis Jacq.) production in coastal plains of southwest Cameroon. J Agron. 2020;19(2):83-93.
  • 8. Guillaume T, Damris M, Kuzyakov Y. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ13C. Glob Chang Biol. 2015;21(9):3548-60.
  • 9. Guillaume T, Kotowska MM, Hertel D, et al. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat Commun. 2018;9(1):2388.
  • 10. Rahman N, Giller KE, de Neergaard A, et al. The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. J Environ Manage. 2021;278(Pt 1):111391.
  • 11. Formaglio G, Veldkamp E, Damris M, et al. Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation. Biogeochemistry. 2021;154(1):63-80.
  • 12. Mardegan SF, de Castro AF, Chaves SSNF, et al. Organic farming enhances soil carbon and nitrogen dynamics in oil palm crops from Southeast Amazon. Soil Sci Plant Nutr. 2022;68(1):104-13.
  • 13. Zhao G, Mu X, Wen Z, et al. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev. 2013;24(6):499-510.
  • 14. Nigeria Institute for Oil Palm Research (NIFOR). Weather data (temperature, rainfall, and relative humidity); 1993-2011. Annual Report; 2013.
  • 15. Nigeria Geological Survey Agency (NGSA). Regional and geology series. 1st ed. Abuja: NGSA; 2008.
  • 16. Bouyoucos GJ. A rehabilitation of the hydrometer method for making mechanical analysis of soils. Agron J. 1951;43:434-8.
  • 17. Day PR. Particle fractionation and particle-size analysis. In: Black CA, editor. Methods of soil analysis. Part 1. Madison, WI: ASA; 1965. p. 545-67.
  • 18. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38.
  • 19. Bray RH, Kurtz LT. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945;59(1):39-45.
  • 20. Kumar S, Rao R. Protocols for soil sampling, soil and water analysis. New Delhi: Daya Publishing House; 2017.
  • 21. Brady NC, Weil RR. The nature and properties of soils. 15th ed. London: Pearson; 2016.
  • 22. Kumar A, Sharma S, Kumar V. Soil nutrient dynamics in relation to land use changes. J Environ Manage. 2018;206:1215-22.
  • 23. Hazelton P, Murphy B. Interpreting soil test results: What do all the numbers mean? 3rd ed. Clayton: CSIRO Publishing; 2016.
  • 24. Rozieta R, Rahim AS. Physico-chemical properties of soil at oil palm plantation area, Labu, Negeri Sembilan. AIP Conf Proc. 2015;1678(1):020001.
  • 25. Price GW, Voroney RP. Decomposition of maize residues in no-tillage systems: A comparison to conventional tillage. Soil Sci Soc Am J. 2010;74(1):204-16.
  • 26. Oguike PC, Mbagwu JSC. Variation in some physical properties and organic matter content of soils of coastal plain sands under different land-use types. World J Agric Sci. 2016;5(1):63-7.
  • 27. Goh KJ. Fertiliser management in oil palm: Maximising yield and minimising environmental impact. In: Fairhurst T, editor. Oil palm: Management for large and sustainable yields. Singapore: Potash & Phosphate Institute; 2004. p. 217-34.
  • 28. Goh KJ. Fertilizer recommendation systems for oil palm: Estimating the fertilizer rates. In: Soon CP, Tjoa PY, editors. Proceedings of MOSTA Best Practices Workshops: Agronomy and Crop Management. Kuala Lumpur: Malaysian Oil Scientists and Technologies Association; 2015. p. 1-15.
  • 29. Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil. 2002;241(2):155-76.
  • 30. Sparks DL. Environmental soil chemistry. 2nd ed. San Diego: Academic Press; 2003.
  • 31. Stevenson FJ. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. 2nd ed. Hoboken: Wiley; 2005.

Assessment of The Physicochemical Properties of Oil Palm Groves in Sapele, Amukpe Delta State, Nigeria

Yıl 2025, Cilt: 3 Sayı: 1, 15 - 24, 16.07.2025
https://doi.org/10.5281/zenodo.15971918

Öz

Oil palm (Elaeis guineensis Jacq.), a monocotyledonous plant of the Arecaceae family, is a globally significant crop for oil production, with Asia and Africa being the leading producers. However, the expansion of oil palm plantations has raised concerns about biodiversity loss, soil degradation, and ecosystem disruption. This study evaluates the physicochemical properties of soils in the Songhai Delta Amukpe oil palm plantation in Delta State, Nigeria, to assess soil fertility and suitability for oil palm cultivation. Soil samples were collected from five pedons at varying depths (0–180 cm) and analyzed for physical and chemical properties, including texture, pH, soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AVP), and exchangeable cations (K⁺, Ca²⁺, Mg²⁺, Na⁺). Results revealed a dominance of sand particles in upper horizons, promoting drainage but increasing nutrient leaching risks, while higher clay content in deeper horizons enhanced nutrient retention. The soil exhibited a strongly acidic pH (4.76–5.32), within the optimal range for oil palm growth but potentially limiting nutrient availability. SOC and TN levels were high, indicating good organic matter content, while AVP was below the critical threshold, necessitating phosphorus supplementation. Exchangeable cations, particularly Ca²⁺, were abundant, contributing to soil alkalinity. Correlation analysis highlighted significant relationships between soil texture, SOC, TN, and pH, emphasizing the role of sand and silt in organic matter retention and nutrient availability. These findings underscore the need for targeted soil management practices, such as liming and phosphorus fertilization, to optimize soil fertility and ensure sustainable oil palm production. This study provides critical insights into soil health and offers actionable recommendations for improving agricultural productivity in oil palm plantations.

Kaynakça

  • 1. Barcelos E, de Almeida Rios S, Cunha RNV, et al. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci. 2015;6:190.
  • 2. Food and Agriculture Organization (FAO). Food and agricultural data of the world. Production quantities of the oil palm fruit. FAOSTAT; 2020.
  • 3. FAOSTAT. Production quantities of oil palm fruit. FAOSTAT Database; 2023.
  • 4. USDA. Measuring the indirect land-use change associated with increased biofuel feedstock production. Report to Congress, AP-054. Washington, DC: U.S. Department of Agriculture; 2011.
  • 5. Putri EIK, Dharmawan AH, Hospes O, et al. The oil palm governance: Challenges of sustainability policy in Indonesia. Sustainability. 2022;14(3):1234.
  • 6. Castellanos-Navarrete A. Oil palm dispersal into protected wetlands: Human-environment dichotomies and the limits to governance in southern Mexico. Land Use Policy. 2021;103:105295.
  • 7. George KK, Fritz OT, Francis BTS, Roger KE. Identification of soil management factors for sustainable oil palm (Elaeis guineensis Jacq.) production in coastal plains of southwest Cameroon. J Agron. 2020;19(2):83-93.
  • 8. Guillaume T, Damris M, Kuzyakov Y. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ13C. Glob Chang Biol. 2015;21(9):3548-60.
  • 9. Guillaume T, Kotowska MM, Hertel D, et al. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat Commun. 2018;9(1):2388.
  • 10. Rahman N, Giller KE, de Neergaard A, et al. The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. J Environ Manage. 2021;278(Pt 1):111391.
  • 11. Formaglio G, Veldkamp E, Damris M, et al. Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation. Biogeochemistry. 2021;154(1):63-80.
  • 12. Mardegan SF, de Castro AF, Chaves SSNF, et al. Organic farming enhances soil carbon and nitrogen dynamics in oil palm crops from Southeast Amazon. Soil Sci Plant Nutr. 2022;68(1):104-13.
  • 13. Zhao G, Mu X, Wen Z, et al. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev. 2013;24(6):499-510.
  • 14. Nigeria Institute for Oil Palm Research (NIFOR). Weather data (temperature, rainfall, and relative humidity); 1993-2011. Annual Report; 2013.
  • 15. Nigeria Geological Survey Agency (NGSA). Regional and geology series. 1st ed. Abuja: NGSA; 2008.
  • 16. Bouyoucos GJ. A rehabilitation of the hydrometer method for making mechanical analysis of soils. Agron J. 1951;43:434-8.
  • 17. Day PR. Particle fractionation and particle-size analysis. In: Black CA, editor. Methods of soil analysis. Part 1. Madison, WI: ASA; 1965. p. 545-67.
  • 18. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38.
  • 19. Bray RH, Kurtz LT. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945;59(1):39-45.
  • 20. Kumar S, Rao R. Protocols for soil sampling, soil and water analysis. New Delhi: Daya Publishing House; 2017.
  • 21. Brady NC, Weil RR. The nature and properties of soils. 15th ed. London: Pearson; 2016.
  • 22. Kumar A, Sharma S, Kumar V. Soil nutrient dynamics in relation to land use changes. J Environ Manage. 2018;206:1215-22.
  • 23. Hazelton P, Murphy B. Interpreting soil test results: What do all the numbers mean? 3rd ed. Clayton: CSIRO Publishing; 2016.
  • 24. Rozieta R, Rahim AS. Physico-chemical properties of soil at oil palm plantation area, Labu, Negeri Sembilan. AIP Conf Proc. 2015;1678(1):020001.
  • 25. Price GW, Voroney RP. Decomposition of maize residues in no-tillage systems: A comparison to conventional tillage. Soil Sci Soc Am J. 2010;74(1):204-16.
  • 26. Oguike PC, Mbagwu JSC. Variation in some physical properties and organic matter content of soils of coastal plain sands under different land-use types. World J Agric Sci. 2016;5(1):63-7.
  • 27. Goh KJ. Fertiliser management in oil palm: Maximising yield and minimising environmental impact. In: Fairhurst T, editor. Oil palm: Management for large and sustainable yields. Singapore: Potash & Phosphate Institute; 2004. p. 217-34.
  • 28. Goh KJ. Fertilizer recommendation systems for oil palm: Estimating the fertilizer rates. In: Soon CP, Tjoa PY, editors. Proceedings of MOSTA Best Practices Workshops: Agronomy and Crop Management. Kuala Lumpur: Malaysian Oil Scientists and Technologies Association; 2015. p. 1-15.
  • 29. Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil. 2002;241(2):155-76.
  • 30. Sparks DL. Environmental soil chemistry. 2nd ed. San Diego: Academic Press; 2003.
  • 31. Stevenson FJ. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. 2nd ed. Hoboken: Wiley; 2005.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımsal Enerji Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Olakunle Emmanuel Jayeola 0009-0008-5117-9422

İsaiah Ufuoma Efenudu

Aimiesomon Michael Erhayimwen 0000-0002-2226-3464

Yayımlanma Tarihi 16 Temmuz 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 24 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

Vancouver Jayeola OE, Efenudu İU, Michael Erhayimwen A. Assessment of The Physicochemical Properties of Oil Palm Groves in Sapele, Amukpe Delta State, Nigeria. JAFE. 2025;3(1):15-24.