Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Analysis of Unscented Kalman Filter for Smartphone-Based Multi-Parametric Glucose Prediction

Yıl 2025, Cilt: 5 Sayı: 1, 1 - 11, 27.06.2025

Öz

Diabetes mellitus, a chronic disease affecting millions of people worldwide, requires monitoring and management of glucose levels to reduce the risks of hyperglycemia and hypoglycemia. Technological advancements have enabled the development of various digital tools, including continuous glucose monitors (CGMs) for effective management of this disease. However, these tools only provide alerts after glucose levels exceed critical thresholds, which causes delays in taking necessary precautions. To address this issue, various artificial intelligence (AI)-based models have been developed to predict glucose levels in advance. Traditional AI approaches, however, often rely on standardized datasets, limiting their ability to achieve the accuracy required for individualized treatment. Therefore, it is crucial to develop personalized prediction models that can be trained using the individual data of patients. Here, this paper introduces a personalized glucose prediction approach that employs a three-parameter unscented Kalman filter (UKF) to predict future glucose levels using CGM data, as well as basal and bolus insulin values. Experiments on OhioT1DM dataset show the advantage of our proposed approach over the baseline KF and UKF for glucose prediction in terms of Root Mean Square Error. Furthermore, the proposed approach is embedded into a custom-designed cross-platform smartphone application, GlucoThinker Advance, capable of providing offline access to the proposed personalized glucose prediction approach to ensure continuous support without requiring an internet connection.

Kaynakça

  • S. Gül, E. Ü. Avdal, S. Önal, B. N. Dündar, B. Ö. Pamuk, and Z. Doğan, "Diyabette tıbbi bakım standartlarında değişiklikler," İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 5, no. 1, pp. 25-29, 2020.
  • D. J. Magliano and E. J. Boyko, "IDF Diabetes Atlas," 2022.
  • W. H. Organization, Global diffusion of eHealth: making universal health coverage achievable: report of the third global survey on eHealth. World Health Organization, 2017.
  • Ö. A. Koca, A. Türköz, and V. Kılıç, "Tip 1 Diyabette Çok Katmanlı GRU Tabanlı Glikoz Tahmini," Avrupa Bilim ve Teknoloji Dergisi, no. 52, pp. 80-86, 2023.
  • L. Heinemann, "Continuous glucose monitoring (CGM) or blood glucose monitoring (BGM): interactions and implications," Journal of Diabetes Science and Technology, vol. 12, no. 4, pp. 873-879, 2018.
  • Ö. A. Koca, H. Ö. Kabak, and V. Kılıç, "Attention-based multilayer GRU decoder for on-site glucose prediction on smartphone," The Journal of Supercomputing, vol. 80, no. 17, pp. 25616-25639, 2024.
  • M. M. Kebede and C. R. Pischke, "Popular diabetes apps and the impact of diabetes app use on self-care behaviour: a survey among the digital community of persons with diabetes on social media," Frontiers in Endocrinology, vol. 10, p. 135, 2019.
  • J. Daniels, P. Herrero, and P. Georgiou, "A multitask learning approach to personalized blood glucose prediction," IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 1, pp. 436-445, 2021.
  • T. Zhu, K. Li, P. Herrero, and P. Georgiou, "Personalized blood glucose prediction for type 1 diabetes using evidential deep learning and meta-learning," IEEE Transactions on Biomedical Engineering, vol. 70, no. 1, pp. 193-204, 2022.
  • H.-S. Kim, W. Choi, E. K. Baek, Y. A. Kim, S. J. Yang, I. Y. Choi, K.-H. Yoon, and J.-H. Cho, "Efficacy of the smartphone-based glucose management application stratified by user satisfaction," Diabetes & Metabolism Journal, vol. 38, no. 3, pp. 204-210, 2014.
  • C. Pérez-Gandía, A. Facchinetti, G. Sparacino, C. Cobelli, E. Gómez, M. Rigla, A. de Leiva, and M. Hernando, "Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring," Diabetes Technology & Therapeutics, vol. 12, no. 1, pp. 81-88, 2010.
  • C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli, "A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information," in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: IEEE, pp. 5653-5656.
  • M. Ali, R. Johansen Alexander, H. Nicklas, E. Christensen Peter, M. Tarp Jens, L. Jensen Morten, B. Henrik, and M. Morten, "Short term blood glucose prediction based on continuous glucose monitoring data," arXiv preprint arXiv:2002.02805, 2020.
  • G. Alfian, M. Syafrudin, M. Anshari, F. Benes, F. T. D. Atmaji, I. Fahrurrozi, A. F. Hidayatullah, and J. Rhee, "Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features," Biocybernetics and Biomedical Engineering, vol. 40, no. 4, pp. 1586-1599, 2020.
  • M. F. Rabby, Y. Tu, M. I. Hossen, I. Lee, A. S. Maida, and X. Hei, "Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction," BMC Medical Informatics and Decision Making, vol. 21, pp. 1-15, 2021.
  • R. McShinsky and B. Marshall, "Comparison of Forecasting Algorithms for Type 1 Diabetic Glucose Prediction on 30 and 60-Minute Prediction Horizons," in KDH@ ECAI, 2020, pp. 12-18.
  • D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, 2006.
  • S. Haykin, "Kalman filters," Kalman Filtering and Neural Networks, pp. 1-21, 2001.
  • I. F. Godsland and C. Walton, "Maximizing the success rate of minimal model insulin sensitivity measurement in humans: the importance of basal glucose levels," Clinical Science, vol. 101, no. 1, pp. 1-9, 2001.
  • H. H. Ko and R. Enns, "Review of food bolus management," Canadian Journal of Gastroenterology and Hepatology, vol. 22, no. 10, pp. 805-808, 2008.
  • R. Snyderman, "Personalized health care: from theory to practice," Biotechnology Journal, vol. 7, no. 8, pp. 973-979, 2012.
  • S. Oviedo, J. Vehí, R. Calm, and J. Armengol, "A review of personalized blood glucose prediction strategies for T1DM patients," International Journal for Numerical Methods in Biomedical Engineering, vol. 33, no. 6, p. e2833, 2017.
  • Ö. A. Koca and V. Kılıç, "Multi-Parametric Glucose Prediction Using Multi-Layer LSTM," Avrupa Bilim ve Teknoloji Dergisi, no. 52, pp. 169-175, 2023.
  • M. St-Pierre and D. Gingras, "Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system," in IEEE Intelligent Vehicles Symposium, 2004: IEEE, pp. 831-835.
  • S. J. Julier and J. K. Uhlmann, "New extension of the Kalman filter to nonlinear systems," in Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, vol. 3068: Spie, pp. 182-193.
  • R. E. Kalman, "A new approach to linear filtering and prediction problems," 1960.
  • C. Marling and R. Bunescu, "The OhioT1DM dataset for blood glucose level prediction: Update 2020," in CEUR Workshop Proceedings, vol. 2675: NIH Public Access, p. 71.

Akıllı Telefon Tabanlı Çok Parametreli Glikoz Tahmini için Kokusuz Kalman Filtresinin Karşılaştırmalı Analizi

Yıl 2025, Cilt: 5 Sayı: 1, 1 - 11, 27.06.2025

Öz

Dünya çapında milyonlarca insanı etkileyen kronik bir hastalık olan diabetes mellitus, hiperglisemi ve hipoglisemi risklerini azaltmak için glikoz seviyelerinin izlenmesini ve yönetilmesini gerektirmektedir. Teknolojik gelişmeler, bu hastalığın etkin yönetimi için sürekli glikoz monitörleri (CGM'ler) de dahil olmak üzere çeşitli dijital araçların geliştirilmesini sağlamıştır. Ancak bu araçlar yalnızca glikoz seviyeleri kritik eşikleri aştıktan sonra uyarı vermekte, bu da gerekli önlemlerin alınmasında gecikmelere neden olmaktadır. Bu sorunu çözmek amacıyla, glikoz seviyelerini önceden tahmin etmek için çeşitli yapay zeka (YZ) tabanlı modeller geliştirilmiştir. Bununla birlikte, geleneksel YZ yaklaşımları genellikle standartlaştırılmış veri kümelerine dayanmakta ve bireyselleştirilmiş tedavi için gereken doğruluğu elde etme yeteneklerini sınırlamaktadır. Bu nedenle, hastaların bireysel verileri kullanılarak eğitilebilen kişiselleştirilmiş tahmin modellerinin geliştirilmesi çok önemlidir. Bu makalede, CGM verilerinin yanı sıra bazal ve bolus insülin değerlerini kullanarak gelecekteki glikoz seviyelerini tahmin etmek için üç parametreli kokusuz Kalman filtresi (UKF) kullanan kişiselleştirilmiş bir glikoz tahmin yaklaşımı tanıtılmaktadır. OhioT1DM veri kümesi üzerinde yapılan deneyler, Kök Ortalama Kare Hatası açısından glikoz tahmini için önerilen yaklaşımımızın temel KF ve UKF'ye göre avantajını göstermektedir. Ayrıca, önerilen yaklaşım, internet bağlantısı gerektirmeden sürekli destek sağlamak için önerilen kişiselleştirilmiş glikoz tahmin yaklaşımına çevrimdışı erişim sağlayabilen özel tasarlanmış bir çapraz platform akıllı telefon uygulaması olan GlucoThinker Advance'a yerleştirilmiştir.

Kaynakça

  • S. Gül, E. Ü. Avdal, S. Önal, B. N. Dündar, B. Ö. Pamuk, and Z. Doğan, "Diyabette tıbbi bakım standartlarında değişiklikler," İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 5, no. 1, pp. 25-29, 2020.
  • D. J. Magliano and E. J. Boyko, "IDF Diabetes Atlas," 2022.
  • W. H. Organization, Global diffusion of eHealth: making universal health coverage achievable: report of the third global survey on eHealth. World Health Organization, 2017.
  • Ö. A. Koca, A. Türköz, and V. Kılıç, "Tip 1 Diyabette Çok Katmanlı GRU Tabanlı Glikoz Tahmini," Avrupa Bilim ve Teknoloji Dergisi, no. 52, pp. 80-86, 2023.
  • L. Heinemann, "Continuous glucose monitoring (CGM) or blood glucose monitoring (BGM): interactions and implications," Journal of Diabetes Science and Technology, vol. 12, no. 4, pp. 873-879, 2018.
  • Ö. A. Koca, H. Ö. Kabak, and V. Kılıç, "Attention-based multilayer GRU decoder for on-site glucose prediction on smartphone," The Journal of Supercomputing, vol. 80, no. 17, pp. 25616-25639, 2024.
  • M. M. Kebede and C. R. Pischke, "Popular diabetes apps and the impact of diabetes app use on self-care behaviour: a survey among the digital community of persons with diabetes on social media," Frontiers in Endocrinology, vol. 10, p. 135, 2019.
  • J. Daniels, P. Herrero, and P. Georgiou, "A multitask learning approach to personalized blood glucose prediction," IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 1, pp. 436-445, 2021.
  • T. Zhu, K. Li, P. Herrero, and P. Georgiou, "Personalized blood glucose prediction for type 1 diabetes using evidential deep learning and meta-learning," IEEE Transactions on Biomedical Engineering, vol. 70, no. 1, pp. 193-204, 2022.
  • H.-S. Kim, W. Choi, E. K. Baek, Y. A. Kim, S. J. Yang, I. Y. Choi, K.-H. Yoon, and J.-H. Cho, "Efficacy of the smartphone-based glucose management application stratified by user satisfaction," Diabetes & Metabolism Journal, vol. 38, no. 3, pp. 204-210, 2014.
  • C. Pérez-Gandía, A. Facchinetti, G. Sparacino, C. Cobelli, E. Gómez, M. Rigla, A. de Leiva, and M. Hernando, "Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring," Diabetes Technology & Therapeutics, vol. 12, no. 1, pp. 81-88, 2010.
  • C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli, "A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information," in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: IEEE, pp. 5653-5656.
  • M. Ali, R. Johansen Alexander, H. Nicklas, E. Christensen Peter, M. Tarp Jens, L. Jensen Morten, B. Henrik, and M. Morten, "Short term blood glucose prediction based on continuous glucose monitoring data," arXiv preprint arXiv:2002.02805, 2020.
  • G. Alfian, M. Syafrudin, M. Anshari, F. Benes, F. T. D. Atmaji, I. Fahrurrozi, A. F. Hidayatullah, and J. Rhee, "Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features," Biocybernetics and Biomedical Engineering, vol. 40, no. 4, pp. 1586-1599, 2020.
  • M. F. Rabby, Y. Tu, M. I. Hossen, I. Lee, A. S. Maida, and X. Hei, "Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction," BMC Medical Informatics and Decision Making, vol. 21, pp. 1-15, 2021.
  • R. McShinsky and B. Marshall, "Comparison of Forecasting Algorithms for Type 1 Diabetic Glucose Prediction on 30 and 60-Minute Prediction Horizons," in KDH@ ECAI, 2020, pp. 12-18.
  • D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, 2006.
  • S. Haykin, "Kalman filters," Kalman Filtering and Neural Networks, pp. 1-21, 2001.
  • I. F. Godsland and C. Walton, "Maximizing the success rate of minimal model insulin sensitivity measurement in humans: the importance of basal glucose levels," Clinical Science, vol. 101, no. 1, pp. 1-9, 2001.
  • H. H. Ko and R. Enns, "Review of food bolus management," Canadian Journal of Gastroenterology and Hepatology, vol. 22, no. 10, pp. 805-808, 2008.
  • R. Snyderman, "Personalized health care: from theory to practice," Biotechnology Journal, vol. 7, no. 8, pp. 973-979, 2012.
  • S. Oviedo, J. Vehí, R. Calm, and J. Armengol, "A review of personalized blood glucose prediction strategies for T1DM patients," International Journal for Numerical Methods in Biomedical Engineering, vol. 33, no. 6, p. e2833, 2017.
  • Ö. A. Koca and V. Kılıç, "Multi-Parametric Glucose Prediction Using Multi-Layer LSTM," Avrupa Bilim ve Teknoloji Dergisi, no. 52, pp. 169-175, 2023.
  • M. St-Pierre and D. Gingras, "Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system," in IEEE Intelligent Vehicles Symposium, 2004: IEEE, pp. 831-835.
  • S. J. Julier and J. K. Uhlmann, "New extension of the Kalman filter to nonlinear systems," in Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, vol. 3068: Spie, pp. 182-193.
  • R. E. Kalman, "A new approach to linear filtering and prediction problems," 1960.
  • C. Marling and R. Bunescu, "The OhioT1DM dataset for blood glucose level prediction: Update 2020," in CEUR Workshop Proceedings, vol. 2675: NIH Public Access, p. 71.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ece Ayfer 0009-0006-8098-1583

Ömer Atılım Koca 0009-0007-7286-6785

Volkan Kılıç 0000-0002-3164-1981

Gönderilme Tarihi 1 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 1

Kaynak Göster

IEEE E. Ayfer, Ö. A. Koca, ve V. Kılıç, “A Comparative Analysis of Unscented Kalman Filter for Smartphone-Based Multi-Parametric Glucose Prediction”, Journal of Artificial Intelligence and Data Science, c. 5, sy. 1, ss. 1–11, 2025.