Araştırma Makalesi
BibTex RIS Kaynak Göster

Sosyal Davranışların Güçlendirilmiş Bulanık İlişkilerinin Graf Modeli Üzerinden Değerlendirilmesi

Yıl 2025, Cilt: 5 Sayı: 2, 99 - 109, 23.12.2025

Öz

Bulanık mantık, özellikle belirsizlik ve öznel deneyimin merkezi olduğu yerlerde, sosyal gerçekliğin nüanslarını yakalamak için sosyolojiye esnek, matematiksel bir çerçeve sunar. Bu yaklaşım, sosyal sistemlerin ve insan davranışının daha doğru ve kapsamlı bir analizini sağlar. Bulanık ilişkiler, sosyal ilişkilerin gücünü veya yakınlığını temsil eder. Bulanık ilişki yöntemleri, sosyal gruplar arasındaki yakınlık, çatışma veya işbirliğinin derecesini ölçerek, gruplar arası ilişkilerin daha ayrıntılı bir şekilde anlaşılmasını sağlar. Bu çalışmada, toplumlar arasındaki benzerlik ilişkileri bulanık mantık yöntemi kullanılarak değerlendirilmiştir. Bulanık mantık, 0 ile 1 arasındaki üyelik dereceleri aracılığıyla güçlü bir ilişkisel model sağlar. Bu çalışma, sosyal gruplar arasındaki benzerlik ilişkilerinin matematiksel modelini sunmayı amaçlamaktadır. Sosyal gruplara ait bölgeler bir çizge modeli aracılığıyla sunulmaktadır. Üyelik dereceleri, sosyal farklılaşmaları temsil eden parametrelere atanmaktadır. Bölgelerin benzerlik matrisleri, bu çalışmada önerilen algoritma kullanılarak hesaplanmaktadır. Bölgelerin bulanık eşdeğerlik ve tolerans ilişkileri, benzerlik matrislerinde gözlemlenmektedir. Bölgeler arasındaki benzerliği güçlendirmek için bulanık bileşim yöntemi kullanılmaktadır. Bu çalışmanın sonucunda, sosyal farklılaşma parametrelerinin bölgeler üzerindeki benzerlik etkisi benzerlik matrisleri ve grafikleri aracılığıyla gözlemlenebilmektedir.

Kaynakça

  • P. Murthy, “Fuzzy Logical Techniques in Social Science Research, Application and Adoption,” SSRN Electronic Journal, 2019. [Online]. Available: https://ssrn.com/abstract=3394030 doi: 10.2139/ssrn.3394030
  • T. Kron, “Fuzzy-logic for sociology,” in Proc. 2008 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), New York, NY, USA, 2008, pp. 1–5. doi: 10.1109/NAFIPS.2008.4531331
  • L. L. Pipino and J. P. V. Gigch, “Potential impact of fuzzy sets on the social sciences,” Cybernetics and Systems, vol. 12, no. 1–2, pp. 21–35, 1981. doi: 10.1080/01969728108927662
  • C. C. Ragin, Fuzzy-Set Social Science. Chicago, IL, USA: Univ. of Chicago Press, 2000.
  • C. C. Ragin and P. Pennings, “Fuzzy sets and social research,” Sociological Methods and Research, vol. 33, no. 4, pp. 423–430, 2005.
  • M. Smithson, “Fuzzy set inclusion: Linking fuzzy set methods with mainstream techniques,” Sociological Methods & Research, vol. 33, no. 4, pp. 431–461, 2005.
  • M. Smithson and J. Verkuilen, Fuzzy Set Theory: Applications in the Social Sciences, Quantitative Applications in the Social Sciences series. Thousand Oaks, CA, USA: Sage, 2006.
  • L. Winter and T. Kron, “Fuzzy thinking in sociology,” in Views on Fuzzy Sets and Systems from Different Perspectives, R. Seising, Ed. Berlin, Heidelberg: Springer, 2009, vol. 243, pp. 331–342. doi: 10.1007/978-3-540-93802-6_14
  • C. C. Ragin, Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago, IL, USA: Univ. of Chicago Press, 2008.
  • L. Wang, A Course in Fuzzy Systems and Control. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.
  • T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed. Chichester, U.K.: John Wiley & Sons, Ltd., 2004.
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
  • T. Kron, “Fuzzy-terrorism – Zur Strategie-Evolution des transnationalen Terrorismus,” in Analysen des transnationalen Terrorismus: Soziologische Perspektiven, T. Kron and M. Reddig, Eds. Wiesbaden, Germany: VS-Verlag, 2007, pp. 84–121.
  • U. Beck, Cosmopolitan Vision. Cambridge, U.K.: Polity Press, 2006.
  • C. J. Zhang, J. D. Brody, and S. Wright, “Sociological applications of fuzzy classification analysis,” Applied Behavioral Science Review, no. 2, p. 171, 1994.
  • A. Cerioli and S. Zani, “A fuzzy approach to the measurement of poverty,” in Income and Wealth Distribution, Inequality and Poverty, C. Dagum and M. Zenga, Eds. Berlin, Heidelberg: Springer, 1990. doi: 10.1007/978-3-642-84250-4_18
  • G. Betti and V. K. Verma, “Measuring the degree of poverty in a dynamic and comparative context: A multi-dimensional approach using fuzzy set theory,” in Proc. Sixth Islamic Countries Conf. Statistical Sciences, Lahore, Pakistan, 1999.
  • K. A. Bollen, Structural Equations with Latent Variables. New York, NY, USA: John Wiley & Sons, Inc., 1989.
  • H. Keman, Comparative Democratic Politics: A Guide to Contemporary Theory and Research, 2002. doi: 10.5860/choice.40-2425
  • I. O. Pappas, M. N. Giannakos, and D. G. Sampson, “Fuzzy set analysis as a means to understand users of 21st-century learning systems: The case of mobile learning and reflections on learning analytics research,” Computers in Human Behavior, vol. 92, pp. 646–659, 2019. doi: 10.1016/j.chb.2017.10.010
  • L. Carvalho, D. Almeida, A. Loures, P. Ferreira, and F. Rebola, “Quality education for all: A fuzzy set analysis of sustainable development goal compliance,” Sustainability, vol. 16, no. 12, p. 5218, 2024. doi: 10.3390/su16125218
  • D. Neff, “Fuzzy set theoretic applications in poverty research,” Policy and Society, vol. 32, no. 4, pp. 319–331, 2013. doi: 10.1016/j.polsoc.2013.10.004
  • B. Cooper, “Applying Ragin’s crisp and fuzzy set QCA to large datasets: Social class and educational achievement in the National Child Development Study,” Sociological Research Online, vol. 10, no. 2, 2005.
  • N. Cangialosi, “Fuzzy-set qualitative comparative analysis (fsQCA) in organizational psychology: Theoretical overview, research guidelines, and a step-by-step tutorial using R software,” The Spanish Journal of Psychology, vol. 26, e21, 2023. doi: 10.1017/SJP.2023.21
  • N. Legewie, “Anchored calibration: From qualitative data to fuzzy sets,” Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, vol. 18, no. 3, art. 14, 2017. doi: 10.17169/fqs-18.3.2790
  • U. Ott, R. R. Sinkovics, and S. F. Hoque, “Advances in qualitative comparative analysis (QCA): Application of fuzzy set in business and management research,” in The Sage Handbook of Qualitative Business and Management Research Methods, C. Cassell, A. L. Cunliffe, and G. Grandy, Eds. London, U.K.: Sage Publications, 2018, pp. 414–430.
  • C. Xing, “Management model of higher education based on innovative using fuzzy sets,” Journal of Fuzzy Extension and Applications, vol. 5, no. 3, pp. 469–493, 2024.
  • V. K. Mago, H. K. Morden, C. Fritz, T. Wu, S. Namazi, P. Geranmayeh, R. Chattopadhyay, and V. Dabbaghian, “Analyzing the impact of social factors on homelessness: A fuzzy cognitive map approach,” BMC Medical Informatics and Decision Making, vol. 13, no. 94, 2013. doi: 10.1186/1472-6947-13-94
  • M. Alqahtani, R. Keerthana, S. Venkatesh, and M. Kaviyarasu, “Hesitant bipolar-valued intuitionistic fuzzy graphs for identifying the dominant person in social media groups,” Symmetry, vol. 16, no. 10, p. 1293, 2024. doi: 10.3390/sym16101293
  • J. R. Raja, J. G. Lee, D. Dhotre, P. Mane, O. S. Rajankar, A. Kalampakas, N. D. Jambhekar, and D. G. Bhalke, “Fuzzy graphs and their applications in finding the best route, dominant node and influence index in a network under the hesitant bipolar-valued fuzzy environment,” Complex & Intelligent Systems, vol. 10, pp. 5195–5211, 2024. doi: 10.1007/s40747-024-01438-8
  • Y. Rao, S. Lei, A. A. Talebi, and M. Mojahedfar, “A novel concept of level graph in interval-valued fuzzy graphs with application,” Symmetry, vol. 15, p. 2106, 2023. doi: 10.3390/sym15122106
  • F. Di Martino and S. Sessa, “A novel image similarity measure based on greatest and smallest eigen fuzzy sets,” Symmetry, vol. 15, p. 1104, 2023. doi: 10.3390/sym15051104
  • R. Ismail, S. U. Khan, S. Al Ghour, E. H. A. Al-Sabri, M. M. S. Mohammed, S. Hussain, F. Hussain, G. Nordo, and A. Mehmood, “A complete breakdown of politics coverage using the concept of domination and double domination in picture fuzzy graph,” Symmetry, vol. 15, p. 1044, 2023. doi: 10.3390/sym15051044
  • S. U. Khan, E. H. A. Al-Sabri, R. Ismail, M. M. S. Mohammed, S. Hussain, and A. Mehmood, “Prediction model of a generative adversarial network using the concept of complex picture fuzzy soft information,” Symmetry, vol. 15, p. 577, 2023. doi: 10.3390/sym15030577
  • Z. Bauman and T. May, Thinking Sociologically, 3rd ed. Hoboken, NJ, USA: Wiley-Blackwell, 2019. ISBN: 978-1-118-95998-5.
  • A. Giddens and P. W. Sutton, Sociology, 9th ed. Cambridge, U.K.: Polity Press, 2021.
  • C. Calhoun, Classical Sociological Theory, 2nd ed., ch. 33, “An Outline of the Social System [1961],” Hoboken, NJ, USA: Wiley-Blackwell, 2007.
  • D. Juteau, Social Differentiation: Patterns and Processes. Toronto, ON, Canada: University of Toronto Press, 2003.
  • G. Lemaine, “Social differentiation and social originality,” European Journal of Social Psychology, vol. 4, no. 1, 1974. doi: 10.1002/ejsp.2420040103
  • N. Mark, “Beyond individual differences: Social differentiation from first principles,” American Sociological Review, vol. 63, no. 3, pp. 309–330, 1998.
  • M. Albert, “World society and social differentiation: Segmentation, stratification and functional differentiation,” in A Theory of World Politics, Cambridge Studies in International Relations, Cambridge, U.K.: Cambridge Univ. Press, 2016, pp. 46–76.
  • U. Schimank, “Differentiation: Social,” in International Encyclopedia of the Social & Behavioral Sciences. Oxford, U.K.: Pergamon, 2001, pp. 3663–3668.
  • T. Parsons, The Social System. London, U.K.: Taylor & Francis e-Library, 2005.
  • G. Fernández-Blanco Martín, F. Matía, L. García Gómez-Escalonilla, D. Galan, M. G. Sánchez-Escribano, P. de la Puente, and M. Rodríguez-Cantelar, “An emotional model based on fuzzy logic and social psychology for a personal assistant robot,” Applied Sciences, vol. 13, p. 3284, 2023. doi: 10.3390/app13053284
  • L. Zedam and B. De Baets, “Transitive closures of ternary fuzzy relations,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 1784–1795, 2021.
  • L. Zhang, Y. Zhang, and S. Zhao, “The optimal approximation of fuzzy tolerance relation,” in Rough Sets and Knowledge Technology (RSKT 2011), J. Yao, S. Ramanna, G. Wang, and Z. Suraj, Eds., Lecture Notes in Computer Science, vol. 6954. Berlin, Heidelberg: Springer, 2011. doi: 10.1007/978-3-642-24425-4_75
  • M. Sen, D. Dutta, and A. Deshpande, “Type-2 fuzzy G-tolerance relation and its properties,” International Journal of Analysis and Applications, vol. 15, no. 2, pp. 172–178, 2017.
  • I. Beg and S. Ashraf, “Fuzzy equivalence relations,” Kuwait Journal of Science & Engineering, vol. 35, no. 1A, pp. 33–51, 2008.
  • B. Jayaram and R. Mesiar, “I-fuzzy equivalence relations and I-fuzzy partitions,” Information Sciences, vol. 179, pp. 1278–1297, 2009.
  • S. O. Mashchenko, O. A. Kapustian, and B. Rubino, “On Kemeny optimization scheme for fuzzy set of relations,” Axioms, vol. 12, p. 1067, 2023. doi: 10.3390/axioms12121067
  • C. M. Tam, T. K. L. Tong, A. W. T. Leung, and G. W. C. Chiu, “Site layout planning using nonstructural fuzzy decision support system,” Journal of Construction Engineering and Management, vol. 128, no. 3, p. 220, 2002. doi: 10.1061/(ASCE)0733-9364(2002)128:3(220)

Exploiting Fuzzy Strength Relations of Social Behaviors on a Graph Model

Yıl 2025, Cilt: 5 Sayı: 2, 99 - 109, 23.12.2025

Öz

Fuzzy logic offers sociology a flexible, mathematical framework to capture the nuances of social reality, especially where ambiguity and subjective experience are central. This approach enables a more accurate and rich analysis of social systems and human behavior. Fuzzy relations represent the strength or closeness of social relations. Fuzzy relations methods measure the degree of closeness, conflict, or cooperation between social groups, providing a more nuanced understanding of intergroup relationships. In this study, the similarity relations between societies are evaluated by using the fuzzy logic method. Fuzzy logic provides a powerful relational model through membership degrees between 0 and 1. This work aims to present the mathematical model of the similarity relations among social groups. Regions belonging to social groups are presented through a graph model. Membership degrees are assigned to the parameters representing social differentiations. Similarity matrices of the regions are calculated using the algorithm proposed in this study. Fuzzy equivalence and tolerance relations of the regions are observed in similarity matrices. The fuzzy composition method is used to strengthen the similarity between regions. As a result of this study, the similarity effect of social differentiation parameters on regions can be observed through similarity matrices and graphs.

Kaynakça

  • P. Murthy, “Fuzzy Logical Techniques in Social Science Research, Application and Adoption,” SSRN Electronic Journal, 2019. [Online]. Available: https://ssrn.com/abstract=3394030 doi: 10.2139/ssrn.3394030
  • T. Kron, “Fuzzy-logic for sociology,” in Proc. 2008 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), New York, NY, USA, 2008, pp. 1–5. doi: 10.1109/NAFIPS.2008.4531331
  • L. L. Pipino and J. P. V. Gigch, “Potential impact of fuzzy sets on the social sciences,” Cybernetics and Systems, vol. 12, no. 1–2, pp. 21–35, 1981. doi: 10.1080/01969728108927662
  • C. C. Ragin, Fuzzy-Set Social Science. Chicago, IL, USA: Univ. of Chicago Press, 2000.
  • C. C. Ragin and P. Pennings, “Fuzzy sets and social research,” Sociological Methods and Research, vol. 33, no. 4, pp. 423–430, 2005.
  • M. Smithson, “Fuzzy set inclusion: Linking fuzzy set methods with mainstream techniques,” Sociological Methods & Research, vol. 33, no. 4, pp. 431–461, 2005.
  • M. Smithson and J. Verkuilen, Fuzzy Set Theory: Applications in the Social Sciences, Quantitative Applications in the Social Sciences series. Thousand Oaks, CA, USA: Sage, 2006.
  • L. Winter and T. Kron, “Fuzzy thinking in sociology,” in Views on Fuzzy Sets and Systems from Different Perspectives, R. Seising, Ed. Berlin, Heidelberg: Springer, 2009, vol. 243, pp. 331–342. doi: 10.1007/978-3-540-93802-6_14
  • C. C. Ragin, Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago, IL, USA: Univ. of Chicago Press, 2008.
  • L. Wang, A Course in Fuzzy Systems and Control. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.
  • T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed. Chichester, U.K.: John Wiley & Sons, Ltd., 2004.
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
  • T. Kron, “Fuzzy-terrorism – Zur Strategie-Evolution des transnationalen Terrorismus,” in Analysen des transnationalen Terrorismus: Soziologische Perspektiven, T. Kron and M. Reddig, Eds. Wiesbaden, Germany: VS-Verlag, 2007, pp. 84–121.
  • U. Beck, Cosmopolitan Vision. Cambridge, U.K.: Polity Press, 2006.
  • C. J. Zhang, J. D. Brody, and S. Wright, “Sociological applications of fuzzy classification analysis,” Applied Behavioral Science Review, no. 2, p. 171, 1994.
  • A. Cerioli and S. Zani, “A fuzzy approach to the measurement of poverty,” in Income and Wealth Distribution, Inequality and Poverty, C. Dagum and M. Zenga, Eds. Berlin, Heidelberg: Springer, 1990. doi: 10.1007/978-3-642-84250-4_18
  • G. Betti and V. K. Verma, “Measuring the degree of poverty in a dynamic and comparative context: A multi-dimensional approach using fuzzy set theory,” in Proc. Sixth Islamic Countries Conf. Statistical Sciences, Lahore, Pakistan, 1999.
  • K. A. Bollen, Structural Equations with Latent Variables. New York, NY, USA: John Wiley & Sons, Inc., 1989.
  • H. Keman, Comparative Democratic Politics: A Guide to Contemporary Theory and Research, 2002. doi: 10.5860/choice.40-2425
  • I. O. Pappas, M. N. Giannakos, and D. G. Sampson, “Fuzzy set analysis as a means to understand users of 21st-century learning systems: The case of mobile learning and reflections on learning analytics research,” Computers in Human Behavior, vol. 92, pp. 646–659, 2019. doi: 10.1016/j.chb.2017.10.010
  • L. Carvalho, D. Almeida, A. Loures, P. Ferreira, and F. Rebola, “Quality education for all: A fuzzy set analysis of sustainable development goal compliance,” Sustainability, vol. 16, no. 12, p. 5218, 2024. doi: 10.3390/su16125218
  • D. Neff, “Fuzzy set theoretic applications in poverty research,” Policy and Society, vol. 32, no. 4, pp. 319–331, 2013. doi: 10.1016/j.polsoc.2013.10.004
  • B. Cooper, “Applying Ragin’s crisp and fuzzy set QCA to large datasets: Social class and educational achievement in the National Child Development Study,” Sociological Research Online, vol. 10, no. 2, 2005.
  • N. Cangialosi, “Fuzzy-set qualitative comparative analysis (fsQCA) in organizational psychology: Theoretical overview, research guidelines, and a step-by-step tutorial using R software,” The Spanish Journal of Psychology, vol. 26, e21, 2023. doi: 10.1017/SJP.2023.21
  • N. Legewie, “Anchored calibration: From qualitative data to fuzzy sets,” Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, vol. 18, no. 3, art. 14, 2017. doi: 10.17169/fqs-18.3.2790
  • U. Ott, R. R. Sinkovics, and S. F. Hoque, “Advances in qualitative comparative analysis (QCA): Application of fuzzy set in business and management research,” in The Sage Handbook of Qualitative Business and Management Research Methods, C. Cassell, A. L. Cunliffe, and G. Grandy, Eds. London, U.K.: Sage Publications, 2018, pp. 414–430.
  • C. Xing, “Management model of higher education based on innovative using fuzzy sets,” Journal of Fuzzy Extension and Applications, vol. 5, no. 3, pp. 469–493, 2024.
  • V. K. Mago, H. K. Morden, C. Fritz, T. Wu, S. Namazi, P. Geranmayeh, R. Chattopadhyay, and V. Dabbaghian, “Analyzing the impact of social factors on homelessness: A fuzzy cognitive map approach,” BMC Medical Informatics and Decision Making, vol. 13, no. 94, 2013. doi: 10.1186/1472-6947-13-94
  • M. Alqahtani, R. Keerthana, S. Venkatesh, and M. Kaviyarasu, “Hesitant bipolar-valued intuitionistic fuzzy graphs for identifying the dominant person in social media groups,” Symmetry, vol. 16, no. 10, p. 1293, 2024. doi: 10.3390/sym16101293
  • J. R. Raja, J. G. Lee, D. Dhotre, P. Mane, O. S. Rajankar, A. Kalampakas, N. D. Jambhekar, and D. G. Bhalke, “Fuzzy graphs and their applications in finding the best route, dominant node and influence index in a network under the hesitant bipolar-valued fuzzy environment,” Complex & Intelligent Systems, vol. 10, pp. 5195–5211, 2024. doi: 10.1007/s40747-024-01438-8
  • Y. Rao, S. Lei, A. A. Talebi, and M. Mojahedfar, “A novel concept of level graph in interval-valued fuzzy graphs with application,” Symmetry, vol. 15, p. 2106, 2023. doi: 10.3390/sym15122106
  • F. Di Martino and S. Sessa, “A novel image similarity measure based on greatest and smallest eigen fuzzy sets,” Symmetry, vol. 15, p. 1104, 2023. doi: 10.3390/sym15051104
  • R. Ismail, S. U. Khan, S. Al Ghour, E. H. A. Al-Sabri, M. M. S. Mohammed, S. Hussain, F. Hussain, G. Nordo, and A. Mehmood, “A complete breakdown of politics coverage using the concept of domination and double domination in picture fuzzy graph,” Symmetry, vol. 15, p. 1044, 2023. doi: 10.3390/sym15051044
  • S. U. Khan, E. H. A. Al-Sabri, R. Ismail, M. M. S. Mohammed, S. Hussain, and A. Mehmood, “Prediction model of a generative adversarial network using the concept of complex picture fuzzy soft information,” Symmetry, vol. 15, p. 577, 2023. doi: 10.3390/sym15030577
  • Z. Bauman and T. May, Thinking Sociologically, 3rd ed. Hoboken, NJ, USA: Wiley-Blackwell, 2019. ISBN: 978-1-118-95998-5.
  • A. Giddens and P. W. Sutton, Sociology, 9th ed. Cambridge, U.K.: Polity Press, 2021.
  • C. Calhoun, Classical Sociological Theory, 2nd ed., ch. 33, “An Outline of the Social System [1961],” Hoboken, NJ, USA: Wiley-Blackwell, 2007.
  • D. Juteau, Social Differentiation: Patterns and Processes. Toronto, ON, Canada: University of Toronto Press, 2003.
  • G. Lemaine, “Social differentiation and social originality,” European Journal of Social Psychology, vol. 4, no. 1, 1974. doi: 10.1002/ejsp.2420040103
  • N. Mark, “Beyond individual differences: Social differentiation from first principles,” American Sociological Review, vol. 63, no. 3, pp. 309–330, 1998.
  • M. Albert, “World society and social differentiation: Segmentation, stratification and functional differentiation,” in A Theory of World Politics, Cambridge Studies in International Relations, Cambridge, U.K.: Cambridge Univ. Press, 2016, pp. 46–76.
  • U. Schimank, “Differentiation: Social,” in International Encyclopedia of the Social & Behavioral Sciences. Oxford, U.K.: Pergamon, 2001, pp. 3663–3668.
  • T. Parsons, The Social System. London, U.K.: Taylor & Francis e-Library, 2005.
  • G. Fernández-Blanco Martín, F. Matía, L. García Gómez-Escalonilla, D. Galan, M. G. Sánchez-Escribano, P. de la Puente, and M. Rodríguez-Cantelar, “An emotional model based on fuzzy logic and social psychology for a personal assistant robot,” Applied Sciences, vol. 13, p. 3284, 2023. doi: 10.3390/app13053284
  • L. Zedam and B. De Baets, “Transitive closures of ternary fuzzy relations,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 1784–1795, 2021.
  • L. Zhang, Y. Zhang, and S. Zhao, “The optimal approximation of fuzzy tolerance relation,” in Rough Sets and Knowledge Technology (RSKT 2011), J. Yao, S. Ramanna, G. Wang, and Z. Suraj, Eds., Lecture Notes in Computer Science, vol. 6954. Berlin, Heidelberg: Springer, 2011. doi: 10.1007/978-3-642-24425-4_75
  • M. Sen, D. Dutta, and A. Deshpande, “Type-2 fuzzy G-tolerance relation and its properties,” International Journal of Analysis and Applications, vol. 15, no. 2, pp. 172–178, 2017.
  • I. Beg and S. Ashraf, “Fuzzy equivalence relations,” Kuwait Journal of Science & Engineering, vol. 35, no. 1A, pp. 33–51, 2008.
  • B. Jayaram and R. Mesiar, “I-fuzzy equivalence relations and I-fuzzy partitions,” Information Sciences, vol. 179, pp. 1278–1297, 2009.
  • S. O. Mashchenko, O. A. Kapustian, and B. Rubino, “On Kemeny optimization scheme for fuzzy set of relations,” Axioms, vol. 12, p. 1067, 2023. doi: 10.3390/axioms12121067
  • C. M. Tam, T. K. L. Tong, A. W. T. Leung, and G. W. C. Chiu, “Site layout planning using nonstructural fuzzy decision support system,” Journal of Construction Engineering and Management, vol. 128, no. 3, p. 220, 2002. doi: 10.1061/(ASCE)0733-9364(2002)128:3(220)
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bulanık Hesaplama
Bölüm Araştırma Makalesi
Yazarlar

Sevcan Emek 0000-0003-2207-8418

Melike Beyza Aytekin 0009-0002-0639-9967

Gönderilme Tarihi 17 Ekim 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE S. Emek ve M. B. Aytekin, “Exploiting Fuzzy Strength Relations of Social Behaviors on a Graph Model”, Journal of Artificial Intelligence and Data Science, c. 5, sy. 2, ss. 99–109, 2025.