Araştırma Makalesi
BibTex RIS Kaynak Göster

Aligning AI Toxicity Predictions with Wet-Lab Biology for PFOA Toxicity in SH-SY5Y Cells

Yıl 2025, Cilt: 5 Sayı: 2, 110 - 116, 23.12.2025

Öz

Perfluorooctanoic acid (PFOA) is a highly persistent per- and polyfluoroalkyl substance (PFAS) widely detected in the environment and biological systems. Its resistance to degradation and bioaccumulative behavior make it a critical toxicological and public health concern. The present study investigates whether probability based artificial intelligence (AI) toxicity predictions align with experimental in vitro findings in human SH-SY5Y neuroblastoma cells. Cells were exposed to PFOA at concentrations ranging from 0 to 2000 µM for 24, 48, and 72 hours, and cell viability was determined using the MTT assay. The resulting IC₅₀ values419.52 µM, 174.97 µM, and 104.64 µM, respectively demonstrated a clear time-dependent increase in apparent cytotoxic potency (~4.01-fold from 24 to 72 h). These empirical data were compared against AI-derived toxicity probabilities from two external platforms: ProTox and CompTox/invitrodb. Calibration between predicted probabilities and observed biological outcomes was assessed using the Brier score. ProTox showed good calibration (Brier = 0.102), whereas CompTox/invitrodb yielded poor alignment (Brier = 0.537), highlighting the importance of endpoint- and time-matched probabilities. The results emphasize that AI models lacking temporal or biological context may underestimate toxicity, particularly when effects manifest gradually over prolonged exposures. This study presents a reproducible, curve-free workflow for integrating AI predictions with time-resolved in vitro toxicity data, providing a framework to enhance biological realism in computational toxicology and guide future PFAS risk assessments.

Kaynakça

  • U.S. Environmental Protection Agency, Final: Human Health Toxicity Assessment for Perfluorooctanoic Acid (PFOA) and Related Salts (815-R-24-006), Washington, DC, USA: EPA, 2024.
  • World Health Organization, PFAS (Per- and Polyfluoroalkyl Substances) Background Document to Guidelines for Drinking-Water Quality, Geneva, Switzerland: WHO, 2024.
  • National Toxicology Program, Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid (PFOA) or Perfluorooctane Sulfonate (PFOS), Research Triangle Park, NC, USA: NTP, 2020.
  • N. Kudo and Y. Kawashima, “Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals,” J. Toxicol. Sci., vol. 28, no. 2, pp. 49–57, May 2003, doi: 10.2131/jts.28.49.
  • S. E. Fenton, A. Ducatman, A. Boobis, J. C. DeWitt, C. Lau, C. Ng, J. S. Smith, and S. M. Roberts, “Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research,” Environ. Toxicol. Chem., vol. 40, no. 3, pp. 606–630, 2021, doi: 10.1002/etc.4890.
  • G. W. Olsen, J. M. Burris, D. J. Ehresman, J. W. Froehlich, A. M. Seacat, J. L. Butenhoff, and L. R. Zobel, “Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical workers,” Environ. Health Perspect., vol. 115, no. 9, pp. 1298–1305, 2007, doi: 10.1289/ehp.10009.
  • C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, and J. Seed, “Perfluoroalkyl acids: A review of monitoring and toxicological findings,” Toxicol. Sci., vol. 99, no. 2, pp. 366–394, 2007, doi: 10.1093/toxsci/kfm128.
  • E. Costello et al., “Exposure to per- and polyfluoroalkyl substances and markers of liver injury: A systematic review and meta-analysis,” Environ. Health Perspect., vol. 130, no. 4, p. 046001, 2022, doi: 10.1289/EHP10092.
  • C. J. Wolf, M. L. Takacs, J. E. Schmid, C. Lau, and B. D. Abbott, ‘’Developmental toxicity of perfluorooctanoic acid in the mouse is dependent on PPARα,” Toxicol. Sci., vol. 95, no. 2, pp. 451–460, 2007, doi: 10.1093/toxsci/kfl170.
  • L. Liang, Y. Pan, L. Bin, Y. Liu, W. Huang, R. Li, and K. P. Lai, “Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS,” Chemosphere, vol. 291, no. 2, p. 132892, 2022, doi: 10.1016/j.chemosphere.2021.132892.
  • A. F. Peritore, E. Gugliandolo, S. Cuzzocrea, R. Crupi, and D. Britti, “Current review of increasing animal health threat of per- and polyfluoroalkyl substances (PFAS): Harms, limitations, and alternatives to manage their toxicity,” Int. J. Mol. Sci., vol. 24, no. 14, p. 11707, 2023, doi: 10.3390/ijms241411707.
  • Ü. Yaman, “Integrative in silico toxicity assessment of chlorfenapyr using AI-driven platforms,” J. Artif. Intell. Data Sci., vol. 5, no. 1, pp. 44–52, 2025.
  • K. M. Ríos-Bonilla, D. S. Aga, J. Lee, M. König, W. Qin, J. R. Cristobal, G. E. Atilla-Gokcumen, and B. I. Escher, “Neurotoxic effects of mixtures of perfluoroalkyl substances (PFAS) at environmental and human blood concentrations,” Environ. Sci. Technol., vol. 58, no. 38, pp. 16774–16784, Sep. 2024, doi: 10.1021/acs.est.4c06017.
  • C. L. Souders II, C. L. Sanchez, W. Malphurs, J. J. Aristizabal-Henao, J. A. Bowden, and C. J. Martyniuk, “Metabolic profiling in human SH-SY5Y neuronal cells exposed to perfluorooctanoic acid (PFOA),” Neurotoxicology, vol. 85, pp. 160–172, 2021, doi: 10.1016/j.neuro.2021.05.009.
  • S. E. Mousavi, J. Yu, and H. M. Shin, “Exploring the neurodegenerative potential of per- and polyfluoroalkyl substances through an adverse outcome pathway network,” Sci. Total Environ., vol. 969, p. 178972, 2025.
  • A. Chaparro-Ortega et al., “Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis,” Toxicol. In Vitro, vol. 46, pp. 86–93, 2018, doi: 10.1016/j.tiv.2017.09.030.
  • J. S. Kang, T. G. Ahn, and J. W. Park, “Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes),” J. Hazard. Mater., vol. 368, pp. 97–103, 2019, doi: 10.1016/j.jhazmat.2019.01.034.
  • L. Kashobwe et al., “Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells,” Toxicology, vol. 506, p. 153862, 2024, doi: 10.1016/j.tox.2024.153862.
  • L. Lagostena et al., “Impact of legacy perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on GABA receptor-mediated currents in neuron-like neuroblastoma cells: Insights into neurotoxic mechanisms and health implications,” J. Xenobiotics, vol. 14, no. 4, pp. 1771–1783, 2024, doi: 10.3390/jox14040094.
  • A. F. Ojo, Q. Xia, C. Peng, and J. C. Ng, “Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress,” Chemosphere, vol. 281, p. 130808, 2021, doi: 10.1016/j.chemosphere.2021.130808.
  • P. Pierozan, F. Jerneren, and O. Karlsson, “Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells,” Arch. Toxicol., vol. 92, no. 5, pp. 1729–1739, 2018, doi: 10.1007/s00204-018-2181-4.
  • G. Sakai et al., “Perfluorooctanoic acid (PFOA) as a stimulator of estrogen receptor-negative breast cancer MDA-MB-231 cell aggressiveness: Evidence for involvement of fatty acid 2-hydroxylase (FA2H) in the stimulated cell migration,” J. Toxicol. Sci., vol. 47, no. 4, pp. 159–168, 2022, doi: 10.2131/jts.47.159.

SH-SY5Y Hücre Hattında PFOA Toksisitesi İçin Yapay Zekâ Toksisite Tahminlerinin Islak Laboratuvar Biyolojisi ile Eşleştirilmesi

Yıl 2025, Cilt: 5 Sayı: 2, 110 - 116, 23.12.2025

Öz

Perflorooktanoik asit (PFOA), çevrede ve biyolojik sistemlerde yaygın olarak tespit edilen, yüksek derecede kalıcı bir per- ve polifloroalkil madde (PFAS)’dır. Bozunmaya karşı gösterdiği direnç ve biyobirikim özelliği, onu önemli bir toksikolojik ve halk sağlığı sorunu haline getirmektedir. Bu çalışmada, olasılığa dayalı yapay zekâ (AI) toksisite tahminlerinin, insan SH-SY5Y nöroblastoma hücrelerinde elde edilen deneysel in vitro bulgularla uyumlu olup olmadığı araştırılmıştır. Hücreler, 0–2000 µM aralığındaki PFOA konsantrasyonlarına 24, 48 ve 72 saat süreyle maruz bırakılmış ve hücre canlılığı MTT testi ile belirlenmiştir. Elde edilen IC₅₀ değerleri sırasıyla 419.52 µM, 174.97 µM ve 104.64 µM olup, görünür sitotoksik etkinin zamana bağlı olarak yaklaşık 4 kat arttığını göstermiştir (24 saatten 72 saate). Bu ampirik veriler, iki harici platformdan elde edilen yapay zekâ kaynaklı toksisite olasılıklarıyla (ProTox ve CompTox/invitrodb) karşılaştırılmıştır. Tahmin edilen olasılıklar ile gözlenen biyolojik sonuçlar arasındaki kalibrasyon, Brier skoru kullanılarak değerlendirilmiştir. ProTox iyi bir kalibrasyon göstermiştir (Brier = 0.102), buna karşın CompTox/invitrodb zayıf bir uyum sergilemiştir (Brier = 0.537). Bu bulgular, zamansal veya biyolojik bağlamdan yoksun yapay zekâ modellerinin toksisiteyi hafife alabileceğini ortaya koymaktadır. Bu çalışma, yapay zekâ tahminlerinin zaman çözünürlüklü in vitro toksisite verileriyle entegrasyonuna yönelik yeniden üretilebilir, eğriye bağımlı olmayan bir yaklaşım sunmakta ve hesaplamalı toksikolojide biyolojik gerçekliğin güçlendirilmesi ile PFAS risk değerlendirmelerinde daha güvenilir öngörüler yapılabilmesi için bir çerçeve önermektedir.

Kaynakça

  • U.S. Environmental Protection Agency, Final: Human Health Toxicity Assessment for Perfluorooctanoic Acid (PFOA) and Related Salts (815-R-24-006), Washington, DC, USA: EPA, 2024.
  • World Health Organization, PFAS (Per- and Polyfluoroalkyl Substances) Background Document to Guidelines for Drinking-Water Quality, Geneva, Switzerland: WHO, 2024.
  • National Toxicology Program, Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid (PFOA) or Perfluorooctane Sulfonate (PFOS), Research Triangle Park, NC, USA: NTP, 2020.
  • N. Kudo and Y. Kawashima, “Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals,” J. Toxicol. Sci., vol. 28, no. 2, pp. 49–57, May 2003, doi: 10.2131/jts.28.49.
  • S. E. Fenton, A. Ducatman, A. Boobis, J. C. DeWitt, C. Lau, C. Ng, J. S. Smith, and S. M. Roberts, “Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research,” Environ. Toxicol. Chem., vol. 40, no. 3, pp. 606–630, 2021, doi: 10.1002/etc.4890.
  • G. W. Olsen, J. M. Burris, D. J. Ehresman, J. W. Froehlich, A. M. Seacat, J. L. Butenhoff, and L. R. Zobel, “Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical workers,” Environ. Health Perspect., vol. 115, no. 9, pp. 1298–1305, 2007, doi: 10.1289/ehp.10009.
  • C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, and J. Seed, “Perfluoroalkyl acids: A review of monitoring and toxicological findings,” Toxicol. Sci., vol. 99, no. 2, pp. 366–394, 2007, doi: 10.1093/toxsci/kfm128.
  • E. Costello et al., “Exposure to per- and polyfluoroalkyl substances and markers of liver injury: A systematic review and meta-analysis,” Environ. Health Perspect., vol. 130, no. 4, p. 046001, 2022, doi: 10.1289/EHP10092.
  • C. J. Wolf, M. L. Takacs, J. E. Schmid, C. Lau, and B. D. Abbott, ‘’Developmental toxicity of perfluorooctanoic acid in the mouse is dependent on PPARα,” Toxicol. Sci., vol. 95, no. 2, pp. 451–460, 2007, doi: 10.1093/toxsci/kfl170.
  • L. Liang, Y. Pan, L. Bin, Y. Liu, W. Huang, R. Li, and K. P. Lai, “Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS,” Chemosphere, vol. 291, no. 2, p. 132892, 2022, doi: 10.1016/j.chemosphere.2021.132892.
  • A. F. Peritore, E. Gugliandolo, S. Cuzzocrea, R. Crupi, and D. Britti, “Current review of increasing animal health threat of per- and polyfluoroalkyl substances (PFAS): Harms, limitations, and alternatives to manage their toxicity,” Int. J. Mol. Sci., vol. 24, no. 14, p. 11707, 2023, doi: 10.3390/ijms241411707.
  • Ü. Yaman, “Integrative in silico toxicity assessment of chlorfenapyr using AI-driven platforms,” J. Artif. Intell. Data Sci., vol. 5, no. 1, pp. 44–52, 2025.
  • K. M. Ríos-Bonilla, D. S. Aga, J. Lee, M. König, W. Qin, J. R. Cristobal, G. E. Atilla-Gokcumen, and B. I. Escher, “Neurotoxic effects of mixtures of perfluoroalkyl substances (PFAS) at environmental and human blood concentrations,” Environ. Sci. Technol., vol. 58, no. 38, pp. 16774–16784, Sep. 2024, doi: 10.1021/acs.est.4c06017.
  • C. L. Souders II, C. L. Sanchez, W. Malphurs, J. J. Aristizabal-Henao, J. A. Bowden, and C. J. Martyniuk, “Metabolic profiling in human SH-SY5Y neuronal cells exposed to perfluorooctanoic acid (PFOA),” Neurotoxicology, vol. 85, pp. 160–172, 2021, doi: 10.1016/j.neuro.2021.05.009.
  • S. E. Mousavi, J. Yu, and H. M. Shin, “Exploring the neurodegenerative potential of per- and polyfluoroalkyl substances through an adverse outcome pathway network,” Sci. Total Environ., vol. 969, p. 178972, 2025.
  • A. Chaparro-Ortega et al., “Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis,” Toxicol. In Vitro, vol. 46, pp. 86–93, 2018, doi: 10.1016/j.tiv.2017.09.030.
  • J. S. Kang, T. G. Ahn, and J. W. Park, “Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes),” J. Hazard. Mater., vol. 368, pp. 97–103, 2019, doi: 10.1016/j.jhazmat.2019.01.034.
  • L. Kashobwe et al., “Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells,” Toxicology, vol. 506, p. 153862, 2024, doi: 10.1016/j.tox.2024.153862.
  • L. Lagostena et al., “Impact of legacy perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on GABA receptor-mediated currents in neuron-like neuroblastoma cells: Insights into neurotoxic mechanisms and health implications,” J. Xenobiotics, vol. 14, no. 4, pp. 1771–1783, 2024, doi: 10.3390/jox14040094.
  • A. F. Ojo, Q. Xia, C. Peng, and J. C. Ng, “Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress,” Chemosphere, vol. 281, p. 130808, 2021, doi: 10.1016/j.chemosphere.2021.130808.
  • P. Pierozan, F. Jerneren, and O. Karlsson, “Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells,” Arch. Toxicol., vol. 92, no. 5, pp. 1729–1739, 2018, doi: 10.1007/s00204-018-2181-4.
  • G. Sakai et al., “Perfluorooctanoic acid (PFOA) as a stimulator of estrogen receptor-negative breast cancer MDA-MB-231 cell aggressiveness: Evidence for involvement of fatty acid 2-hydroxylase (FA2H) in the stimulated cell migration,” J. Toxicol. Sci., vol. 47, no. 4, pp. 159–168, 2022, doi: 10.2131/jts.47.159.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Aktif Algılama, Bilgisayar Görüşü
Bölüm Araştırma Makalesi
Yazarlar

Didem Oral 0000-0002-7025-6576

Gönderilme Tarihi 8 Kasım 2025
Kabul Tarihi 20 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE D. Oral, “Aligning AI Toxicity Predictions with Wet-Lab Biology for PFOA Toxicity in SH-SY5Y Cells”, Journal of Artificial Intelligence and Data Science, c. 5, sy. 2, ss. 110–116, 2025.