BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 1 Sayı: 1, 1 - 4, 01.01.2018

Öz

Kaynakça

  • D. Bansal and J. Sok´ol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., Vol. 8(1) Jan. 2017, pp. 1-5.
  • J.E. Brown and A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467474.
  • P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wis- senschaften, Vol. 259. Springer:New York, NY,USA, 1983.
  • A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), 545552.
  • W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741744.
  • J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285290.
  • M. Nunokawa,A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A., 65(1989) 163164.
  • C. Pommerenke, Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
  • H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege, 57(1988) 137141.
  • G.S. S˘al˘agean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362- , Springer, Berlin, Germany, 1983.
  • R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness Collect. Math., 47(1982) 309314.
  • B.A. Uralegaddi, M.D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients Tamkang J. Math., 25(1994) 225230.
  • Department of Mathematics, Faculty of Science, Atat¨urk University, 25240 Erzurum, Turkey
  • Email address: horhan@atauni.edu.tr Department of Mathematics, Faculty of Science, A˘grı ˙Ibrah˙Im C¸ ec¸en University, 04100 A˘grı, Turkey

ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY S ˘ AL ˘ AGEAN OPERATOR

Yıl 2018, Cilt: 1 Sayı: 1, 1 - 4, 01.01.2018

Öz

The aim of this investigation is to give a new subclass of analytic functionsdefined by S˘al˘agean differential operator and find upper bound of Zalcman functionala2− a2n−1for functions belonging to this subclass for n = 3.n

Kaynakça

  • D. Bansal and J. Sok´ol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., Vol. 8(1) Jan. 2017, pp. 1-5.
  • J.E. Brown and A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467474.
  • P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wis- senschaften, Vol. 259. Springer:New York, NY,USA, 1983.
  • A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), 545552.
  • W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741744.
  • J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285290.
  • M. Nunokawa,A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A., 65(1989) 163164.
  • C. Pommerenke, Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
  • H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege, 57(1988) 137141.
  • G.S. S˘al˘agean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362- , Springer, Berlin, Germany, 1983.
  • R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness Collect. Math., 47(1982) 309314.
  • B.A. Uralegaddi, M.D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients Tamkang J. Math., 25(1994) 225230.
  • Department of Mathematics, Faculty of Science, Atat¨urk University, 25240 Erzurum, Turkey
  • Email address: horhan@atauni.edu.tr Department of Mathematics, Faculty of Science, A˘grı ˙Ibrah˙Im C¸ ec¸en University, 04100 A˘grı, Turkey
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Yazarlar

Evrim Toklu Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 1

Kaynak Göster

APA Toklu, E. (2018). ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY S ˘ AL ˘ AGEAN OPERATOR. Journal of Advanced Mathematics and Mathematics Education, 1(1), 1-4.