BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 1 - 4, 01.01.2018

Abstract

References

  • D. Bansal and J. Sok´ol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., Vol. 8(1) Jan. 2017, pp. 1-5.
  • J.E. Brown and A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467474.
  • P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wis- senschaften, Vol. 259. Springer:New York, NY,USA, 1983.
  • A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), 545552.
  • W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741744.
  • J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285290.
  • M. Nunokawa,A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A., 65(1989) 163164.
  • C. Pommerenke, Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
  • H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege, 57(1988) 137141.
  • G.S. S˘al˘agean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362- , Springer, Berlin, Germany, 1983.
  • R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness Collect. Math., 47(1982) 309314.
  • B.A. Uralegaddi, M.D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients Tamkang J. Math., 25(1994) 225230.
  • Department of Mathematics, Faculty of Science, Atat¨urk University, 25240 Erzurum, Turkey
  • Email address: horhan@atauni.edu.tr Department of Mathematics, Faculty of Science, A˘grı ˙Ibrah˙Im C¸ ec¸en University, 04100 A˘grı, Turkey

ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY S ˘ AL ˘ AGEAN OPERATOR

Year 2018, Volume: 1 Issue: 1, 1 - 4, 01.01.2018

Abstract

The aim of this investigation is to give a new subclass of analytic functionsdefined by S˘al˘agean differential operator and find upper bound of Zalcman functionala2− a2n−1for functions belonging to this subclass for n = 3.n

References

  • D. Bansal and J. Sok´ol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., Vol. 8(1) Jan. 2017, pp. 1-5.
  • J.E. Brown and A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467474.
  • P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wis- senschaften, Vol. 259. Springer:New York, NY,USA, 1983.
  • A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), 545552.
  • W. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741744.
  • J. Nishiwaki, S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29(2002) 285290.
  • M. Nunokawa,A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A., 65(1989) 163164.
  • C. Pommerenke, Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
  • H. Saitoh, M. Nunokawa, S. Fukui, S. Owa, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liege, 57(1988) 137141.
  • G.S. S˘al˘agean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362- , Springer, Berlin, Germany, 1983.
  • R. Singh, S. Singh, Some sufficient conditions for univalence and starlikeness Collect. Math., 47(1982) 309314.
  • B.A. Uralegaddi, M.D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients Tamkang J. Math., 25(1994) 225230.
  • Department of Mathematics, Faculty of Science, Atat¨urk University, 25240 Erzurum, Turkey
  • Email address: horhan@atauni.edu.tr Department of Mathematics, Faculty of Science, A˘grı ˙Ibrah˙Im C¸ ec¸en University, 04100 A˘grı, Turkey
There are 14 citations in total.

Details

Primary Language English
Journal Section Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Authors

Evrim Toklu This is me

Publication Date January 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Toklu, E. (2018). ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY S ˘ AL ˘ AGEAN OPERATOR. Journal of Advanced Mathematics and Mathematics Education, 1(1), 1-4.