Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential

Yıl 2025, Cilt: 8 Sayı: 2, 229 - 252, 31.12.2025
https://doi.org/10.35206/jan.1749818

Öz

The increased use of plastic materials, including polyethylene terephthalate (PET), has caused serious environmental pollution. Due to the lack of effective methods for PET degradation and recycling, new methods such as microbial plastic degradation are being investigated. In this study, soil samples were collected from an old waste dumping site located in Trabzon/Turkiye and screened for PET-degrading bacteria. Three isolates were determined to use PET as sole carbon source. Based on 16S rRNA sequences, strain PETDeg 3 and 4 were identified as Bacillus licheniformis, and strain PETDeg 5 as Acinetobacter junii. Biodegradation of PET by bacteria was assessed using weight loss, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) methods. In a 28 days of degradation study using PET films, incubation with PETDeg 3, PETDeg 4, and PETDeg 5 resulted in 0.42%, 0.75%, and 0.25% of weight loss respectively. SEM revealed obvious structural changes such as roughness, fissures and cracks on the surfaces of the PET films.

Kaynakça

  • Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V., & Doble, M. (2010). Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. International Biodeterioration & Biodegradation, 64(7), 530–536. https://doi.org/10.1016/j.ibiod.2010.06.002
  • Atanasova, N., Stoitsova, S., Paunova-Krasteva, T., & Kambourova, M. (2021). Plastic degradation by extremophilic bacteria. International Journal of Molecular Sciences, 22(11), 5610. https://doi.org/10.3390/ijms22115610
  • Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry. Polymers, 14(12), 2366. https://doi.org/10.3390/polym14122366 Boonmahome, P., & Mongkolthanaruk, W. (2013). Lipase-producing bacterium and its enzyme characterization. Journal of Life Sciences and Technologies, 1(4), 196–200. https://doi.org/10.12720/jolst.1.4.196-200
  • Danso, D., Chow, J., Streit, W. R., & Drake, H. L. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19), e01095-19. https://doi.org/10.1128/AEM.01095-19
  • Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., et al. (2018). New insights into the function and global distribution of polyethylene terephthalate (PET)- degrading bacteria and enzymes in marine and terrestrial metagenomes. Applied and Environmental Microbiology, 84(8), e02773-17. https://doi.org/10.1128/AEM.02773-17
  • Day, M., & Wiles, D. M. (1972). Photochemical degradation of poly(ethylene terephthalate). II. Effect of wavelength and environment on the decomposition process. Journal of Applied Polymer Science, 16(1), 191–202. https://doi.org/10.1002/app.1972.070160117
  • Demirkan, E., Guler, B. E., & Sevgi, T. (2020). Analysis by scanning electron microscopy of polyethylene terephthalate and nylon biodegradation abilities of Bacillus sp. strains isolated from soil. Journal of Biological and Environmental Sciences, 14(42), 107–114.
  • Denaro, R., Aulenta, F., Crisafi, F., Di Pippo, F., Cruz Viggi, C., Matturro, B., et al. (2020). Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET). Science of the Total Environment, 749, 141608. https://doi.org/10.1016/j.scitotenv.2020.141608
  • Din, S. U., Kalsoom, S., Satti, S. M., Uddin, S., Mankar, S. V., Ceylan, E., et al. (2023). The purification and characterization of a cutinase-like enzyme with activity on polyethylene terephthalate (PET) from a newly isolated bacterium Stenotrophomonas maltophilia PRS8 at a mesophilic temperature. Applied Sciences, 13(6), 3686. https://doi.org/10.3390/app13063686
  • Drobota, M., Persin, Z., Zemljič, L. F., Mohan, T., Stana-Kleinschek, K., Doliska, A., et al. (2013). Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Central European Journal of Chemistry, 11(11), 1786–1798. https://doi.org/10.2478/s11532-013-0319-z
  • Fernández, C. D. B., Castillo, M. P. G., Pérez, S. A. Q., & Rodríguez, L. V. C. (2022). Microbial degradation of polyethylene terephthalate: A systematic review. SN Applied Sciences, 4, 263. https://doi.org/10.1007/s42452-022-05143-4
  • Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 20, 4339–4355. https://doi.org/10.1007/s11356-013-1706-x Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  • Heris, Y. S., et al. (2024). Bacterial biodegradation of synthetic plastics: a review. Bulletin of the National Research Centre, 48, 132. https://doi.org/10.1186/s42269-024-01241-y
  • Hirota, Y., Naya, M., Tada, M., et al. (2021). Analysis of soil fungal community structure on the surface of buried polyethylene terephthalate. Journal of Polymers and the Environment, 29, 1227–1239. https://doi.org/10.1007/s10924-020-01960-z
  • Huang, X., Cao, L., Qin, Z., Li, S., Kong, W., & Liu, Y. (2018). Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide. Journal of Agricultural and Food Chemistry, 66(50), 13217–13227. https://doi.org/10.1021/acs.jafc.8b05038
  • Hussein, A., Alzuhairi, M. H., & Aljanabi, N. H. (2018). Chemical and biological treatment of plastic wastes by bacteria isolated from contaminated soils in Baghdad, Iraq. Journal of Al- Nahrain University, 21(2), 130–137. https://doi.org/10.22401/JNUS.21.2.19
  • Janczak, K., Hrynkiewicz, K., Znajewska, Z., & Dąbrowska, G. (2018). Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. International Biodeterioration & Biodegradation, 130, 65–75. https://doi.org/10.1016/j.ibiod.2018.03.006
  • Jin, J., et al. (2024). Characterization of potential plastic-degradation enzymes: lipase, esterase, and cutinase contributions. ACS Omega. https://doi.org/10.1021/acsomega.4c04843
  • Karpushova, A., Brümmer, F., Barth, S., Lange, S., & Schmid, R. (2005). Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba. Applied Microbiology and Biotechnology, 67, 59–69. https://doi.org/10.1007/s00253-004-1780-6
  • Kawai, F., Kawabata, T., & Oda, M. (2019). Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 103, 4253–4268. https://doi.org/10.1007/s00253-019-09717-y
  • Kim, H. R., Lee, C., Shin, H., Kim, J., Jeong, M., & Choi, D. (2023). Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon, 9(5), e15731. https://doi.org/10.1016/j.heliyon.2023.e15731
  • Koshti, R., Mehta, L., & Samarth, N. (2018). Biological recycling of polyethylene terephthalate: A mini-review. Journal of Polymers and the Environment, 26, 3520–3529. https://doi.org/10.1007/s10924-018-1214-7
  • Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52, 411–419. https://doi.org/10.1007/s12088-012-0250-6
  • Maurya, A., Bhattacharya, A., & Khare, S. K. (2020). Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Frontiers in Bioengineering and Biotechnology, 8, 602325. https://doi.org/10.3389/fbioe.2020.602325
  • Mohammadian, M., Allen, N. S., Edge, M., & Jones, K. (1991). Environmental degradation of poly(ethylene terephthalate). Textile Research Journal, 61(11), 690–696. https://doi.org/10.1177/004051759106101109
  • Mohanan, N., Rajesh, P. G., Moulishankar, G., Divya, S., Murali, M. R., Chaturvedi, V., et al. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709
  • Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene- degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625. https://doi.org/10.1007/s10924-018-1245-0
  • Müller, R. J., Schrader, H., Profe, J., Dresler, K., & Deckwer, W. D. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26, 1400–1405. https://doi.org/10.1002/marc.200500410
  • Oda, M., Yamagami, Y., Inaba, S., Oida, T., Yamamoto, M., Kitajima, S., & Kawai, F. (2018). Enzymatic hydrolysis of PET: Functional roles of three Ca²⁺ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity. Applied Microbiology and Biotechnology, 102, 10067–10077. https://doi.org/10.1007/s00253-018-9374-x
  • OECD. (2022, November). OECD Economic Outlook. https://www.oecd.org/economic- outlook/november-2022/
  • Plastics Europe. (2020). Plastics–The facts 2020: An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/8016/1125/2189/AF_Plastics_the_facts-WEB 2020-ING_FINAL.pdf
  • Puspitasari, N., Tsai, S. L., & Lee, C. K. (2021). Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. International Journal of Biological Macromolecules, 176, 157–164. https://doi.org/10.1016/j.ijbiomac.2021.02.026
  • Qi, X., Ma, Y., Chang, H., Li, B., Ding, M., & Yuan, Y. (2021). Evaluation of PET degradation using artificial microbial consortia. Frontiers in Microbiology, 12, 778828. https://doi.org/10.3389/fmicb.2021.778828
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. https://doi.org/10.1016/j.wasman.2017.07.044
  • Ribitsch, D., Acero, E. H., Greimel, K., Dellacher, A., Zitzenbacher, S., Marold, A., et al. (2012). A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers,n 4, 617–629. https://doi.org/10.3390/polym4010617
  • Ribitsch, D., Heumann, S., Trotscha, E., Acero, E. H., Greimel, K., Leber, R., et al. (2011). Hydrolysis of polyethyleneterephthalate by p-Nitrobenzylesterase from Bacillus subtilis. Biotechnology Progress, 27(4), 951–960. https://doi.org/10.1002/btpr.610
  • Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., et al. (2020). Environmental consortium containing Pseudomonas and Bacillus species synergistically degrade polyethylene terephthalate plastic. mSphere, 5(6), e01151-20. https://doi.org/10.1128/mSphere.01151-20
  • Ronkvist, Å. M., Xie, W., Lu, W., & Gross, R. A. (2009). Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42(14), 5128–5138. https://doi.org/10.1021/ma9005318
  • Ruslan, R., Pekey, A., Iqbal, M., Dewi, A., & Djamaan, A. (2018). Characterization of Bacillus sp. ITP 10.2.1 as degrading-bacteria of polyethylene terephthalate (PET) synthetic plastic. International Research Journal of Pharmacy, 9(11), 56–59. https://doi.org/10.7897/2230-8407.0911258
  • Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8. https://doi.org/10.1007/s10965-019-1973-4
  • Satti, S. M., Shah, A. A., Auras, R., & Marsh, T. L. (2017). Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polymer Degradation and Stability, 144, 392–400. https://doi.org/10.1016/j.polymdegradstab.2017.08.023
  • Sayyed, R. Z., Wani, S. J., Alarfaj, A. A., Syed, A., & El-Enshasy, H. A. (2020). Production, purification and evaluation of biodegradation potential of PHB depolymerase of Stenotrophomonas sp. RZS7. PLoS ONE, 15(1), e0220095. https://doi.org/10.1371/journal.pone.0220095
  • Skariyachan, S., Megha, M., Kini, M. N., Mukund, K. M., Rizvi, A., & Vasist, K. (2015). Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187, 4174. https://doi.org/10.1007/s10661-014-4174-y
  • Soong, Y. V., Sobkowicz, M. J., & Xie, D. (2022). Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering, 9(3), 98. https://doi.org/10.3390/bioengineering9030098
  • Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., & Oda, K. (2019). Biodegradation of PET: Current status and application aspects. ACS Catalysis, 9, 4089–4105. https://doi.org/10.1021/acscatal.8b05171 Tokiwa, Y., & Suzuki, T. (1977). Hydrolysis of polyesters by lipases. Nature, 270, 76–78. https://doi.org/10.1038/270076a0
  • Vázquez-Alcántara, L., Oliart-Ros, R. M., García-Bórquez, A., & Peña-Montes, C. (2021). Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiology Spectrum, 9(3), e00976-21. https://doi.org/10.1128/Spectrum.00976-21
  • Venkatachalam, S., Shilpa, G., Jayprakash, V., Prashant, R., Krishna, R., & Anil, K. (2012). Degradation and recyclability of poly (ethylene terephthalate). In Polyester. https://doi.org/10.5772/48612
  • Webb, H. K., Crawford, R. J., Sawabe, T., & Ivanova, E. P. (2009). Poly (ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes and Environments, 24(1), 39–42. https://doi.org/10.1264/jsme2.me08538
  • Wei, R., Oeser, T., Then, J., Kühn, N., Barth, M., Schmidt, J., et al. (2014). Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 4, Article 44. https://doi.org/10.1186/s13568-014-0044-9

Polietilen Tereftalat (PET) Parçalayan Bakterilerin Eski Bir Çöp Depolama Alanından İzole Edilmesi ve PET Biyobozunum Potansiyellerinin İncelenmesi

Yıl 2025, Cilt: 8 Sayı: 2, 229 - 252, 31.12.2025
https://doi.org/10.35206/jan.1749818

Öz

Plastik materyallerin, özellikle polietilen tereftalat (PET) kullanımının artması, ciddi çevresel kirlilik problemlerine yol açmaktadır. PET’in doğada kalıcılığı ve mevcut geri dönüşüm yöntemlerinin yetersizliği, mikrobiyal bozunma gibi alternatif çözüm arayışlarını gündeme getirmiştir. Bu çalışmada, Trabzon/Türkiye’de bulunan eski bir atık döküm sahasından toprak örnekleri alınarak PET bozunumu gerçekleştirebilen bakteriler taranmıştır. Yapılan ön tarama sonucunda üç farklı bakteri izolatının PET’i karbon kaynağı olarak kullanabildiği belirlenmiştir. 16S rRNA gen dizilim analizlerine göre, PETDeg-3 ve PETDeg-4 suşları Bacillus licheniformis, PETDeg-5 suşu ise Acinetobacter junii olarak tanımlanmıştır. Bakteriyel PET biyobozunumu; ağırlık kaybı, Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) ve Taramalı Elektron Mikroskobu (SEM) analizleri ile değerlendirilmiştir. PET film kullanılarak gerçekleştirilen 28 günlük biyobozunma deneyinde, PETDeg-3, PETDeg-4 ve PETDeg-5 suşları ile inkübasyon sonucunda sırasıyla %0,42, %0,75 ve %0,25 oranında ağırlık kaybı tespit edilmiştir. SEM analizleri, PET film yüzeylerinde pürüzlülük, çatlaklar ve yarıklar gibi belirgin yapısal bozulmaların meydana geldiğini göstermiştir. Elde edilen sonuçlar, bu suşların PET biyobozunumu potansiyeline sahip olduğunu ve çevresel plastik kirliliğinin azaltılmasında biyoteknolojik uygulamalarda kullanılabileceklerini göstermektedir.

Kaynakça

  • Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V., & Doble, M. (2010). Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. International Biodeterioration & Biodegradation, 64(7), 530–536. https://doi.org/10.1016/j.ibiod.2010.06.002
  • Atanasova, N., Stoitsova, S., Paunova-Krasteva, T., & Kambourova, M. (2021). Plastic degradation by extremophilic bacteria. International Journal of Molecular Sciences, 22(11), 5610. https://doi.org/10.3390/ijms22115610
  • Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry. Polymers, 14(12), 2366. https://doi.org/10.3390/polym14122366 Boonmahome, P., & Mongkolthanaruk, W. (2013). Lipase-producing bacterium and its enzyme characterization. Journal of Life Sciences and Technologies, 1(4), 196–200. https://doi.org/10.12720/jolst.1.4.196-200
  • Danso, D., Chow, J., Streit, W. R., & Drake, H. L. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19), e01095-19. https://doi.org/10.1128/AEM.01095-19
  • Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., et al. (2018). New insights into the function and global distribution of polyethylene terephthalate (PET)- degrading bacteria and enzymes in marine and terrestrial metagenomes. Applied and Environmental Microbiology, 84(8), e02773-17. https://doi.org/10.1128/AEM.02773-17
  • Day, M., & Wiles, D. M. (1972). Photochemical degradation of poly(ethylene terephthalate). II. Effect of wavelength and environment on the decomposition process. Journal of Applied Polymer Science, 16(1), 191–202. https://doi.org/10.1002/app.1972.070160117
  • Demirkan, E., Guler, B. E., & Sevgi, T. (2020). Analysis by scanning electron microscopy of polyethylene terephthalate and nylon biodegradation abilities of Bacillus sp. strains isolated from soil. Journal of Biological and Environmental Sciences, 14(42), 107–114.
  • Denaro, R., Aulenta, F., Crisafi, F., Di Pippo, F., Cruz Viggi, C., Matturro, B., et al. (2020). Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET). Science of the Total Environment, 749, 141608. https://doi.org/10.1016/j.scitotenv.2020.141608
  • Din, S. U., Kalsoom, S., Satti, S. M., Uddin, S., Mankar, S. V., Ceylan, E., et al. (2023). The purification and characterization of a cutinase-like enzyme with activity on polyethylene terephthalate (PET) from a newly isolated bacterium Stenotrophomonas maltophilia PRS8 at a mesophilic temperature. Applied Sciences, 13(6), 3686. https://doi.org/10.3390/app13063686
  • Drobota, M., Persin, Z., Zemljič, L. F., Mohan, T., Stana-Kleinschek, K., Doliska, A., et al. (2013). Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Central European Journal of Chemistry, 11(11), 1786–1798. https://doi.org/10.2478/s11532-013-0319-z
  • Fernández, C. D. B., Castillo, M. P. G., Pérez, S. A. Q., & Rodríguez, L. V. C. (2022). Microbial degradation of polyethylene terephthalate: A systematic review. SN Applied Sciences, 4, 263. https://doi.org/10.1007/s42452-022-05143-4
  • Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 20, 4339–4355. https://doi.org/10.1007/s11356-013-1706-x Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  • Heris, Y. S., et al. (2024). Bacterial biodegradation of synthetic plastics: a review. Bulletin of the National Research Centre, 48, 132. https://doi.org/10.1186/s42269-024-01241-y
  • Hirota, Y., Naya, M., Tada, M., et al. (2021). Analysis of soil fungal community structure on the surface of buried polyethylene terephthalate. Journal of Polymers and the Environment, 29, 1227–1239. https://doi.org/10.1007/s10924-020-01960-z
  • Huang, X., Cao, L., Qin, Z., Li, S., Kong, W., & Liu, Y. (2018). Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide. Journal of Agricultural and Food Chemistry, 66(50), 13217–13227. https://doi.org/10.1021/acs.jafc.8b05038
  • Hussein, A., Alzuhairi, M. H., & Aljanabi, N. H. (2018). Chemical and biological treatment of plastic wastes by bacteria isolated from contaminated soils in Baghdad, Iraq. Journal of Al- Nahrain University, 21(2), 130–137. https://doi.org/10.22401/JNUS.21.2.19
  • Janczak, K., Hrynkiewicz, K., Znajewska, Z., & Dąbrowska, G. (2018). Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. International Biodeterioration & Biodegradation, 130, 65–75. https://doi.org/10.1016/j.ibiod.2018.03.006
  • Jin, J., et al. (2024). Characterization of potential plastic-degradation enzymes: lipase, esterase, and cutinase contributions. ACS Omega. https://doi.org/10.1021/acsomega.4c04843
  • Karpushova, A., Brümmer, F., Barth, S., Lange, S., & Schmid, R. (2005). Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba. Applied Microbiology and Biotechnology, 67, 59–69. https://doi.org/10.1007/s00253-004-1780-6
  • Kawai, F., Kawabata, T., & Oda, M. (2019). Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 103, 4253–4268. https://doi.org/10.1007/s00253-019-09717-y
  • Kim, H. R., Lee, C., Shin, H., Kim, J., Jeong, M., & Choi, D. (2023). Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon, 9(5), e15731. https://doi.org/10.1016/j.heliyon.2023.e15731
  • Koshti, R., Mehta, L., & Samarth, N. (2018). Biological recycling of polyethylene terephthalate: A mini-review. Journal of Polymers and the Environment, 26, 3520–3529. https://doi.org/10.1007/s10924-018-1214-7
  • Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52, 411–419. https://doi.org/10.1007/s12088-012-0250-6
  • Maurya, A., Bhattacharya, A., & Khare, S. K. (2020). Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Frontiers in Bioengineering and Biotechnology, 8, 602325. https://doi.org/10.3389/fbioe.2020.602325
  • Mohammadian, M., Allen, N. S., Edge, M., & Jones, K. (1991). Environmental degradation of poly(ethylene terephthalate). Textile Research Journal, 61(11), 690–696. https://doi.org/10.1177/004051759106101109
  • Mohanan, N., Rajesh, P. G., Moulishankar, G., Divya, S., Murali, M. R., Chaturvedi, V., et al. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709
  • Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene- degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625. https://doi.org/10.1007/s10924-018-1245-0
  • Müller, R. J., Schrader, H., Profe, J., Dresler, K., & Deckwer, W. D. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26, 1400–1405. https://doi.org/10.1002/marc.200500410
  • Oda, M., Yamagami, Y., Inaba, S., Oida, T., Yamamoto, M., Kitajima, S., & Kawai, F. (2018). Enzymatic hydrolysis of PET: Functional roles of three Ca²⁺ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity. Applied Microbiology and Biotechnology, 102, 10067–10077. https://doi.org/10.1007/s00253-018-9374-x
  • OECD. (2022, November). OECD Economic Outlook. https://www.oecd.org/economic- outlook/november-2022/
  • Plastics Europe. (2020). Plastics–The facts 2020: An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/8016/1125/2189/AF_Plastics_the_facts-WEB 2020-ING_FINAL.pdf
  • Puspitasari, N., Tsai, S. L., & Lee, C. K. (2021). Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. International Journal of Biological Macromolecules, 176, 157–164. https://doi.org/10.1016/j.ijbiomac.2021.02.026
  • Qi, X., Ma, Y., Chang, H., Li, B., Ding, M., & Yuan, Y. (2021). Evaluation of PET degradation using artificial microbial consortia. Frontiers in Microbiology, 12, 778828. https://doi.org/10.3389/fmicb.2021.778828
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. https://doi.org/10.1016/j.wasman.2017.07.044
  • Ribitsch, D., Acero, E. H., Greimel, K., Dellacher, A., Zitzenbacher, S., Marold, A., et al. (2012). A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers,n 4, 617–629. https://doi.org/10.3390/polym4010617
  • Ribitsch, D., Heumann, S., Trotscha, E., Acero, E. H., Greimel, K., Leber, R., et al. (2011). Hydrolysis of polyethyleneterephthalate by p-Nitrobenzylesterase from Bacillus subtilis. Biotechnology Progress, 27(4), 951–960. https://doi.org/10.1002/btpr.610
  • Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., et al. (2020). Environmental consortium containing Pseudomonas and Bacillus species synergistically degrade polyethylene terephthalate plastic. mSphere, 5(6), e01151-20. https://doi.org/10.1128/mSphere.01151-20
  • Ronkvist, Å. M., Xie, W., Lu, W., & Gross, R. A. (2009). Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42(14), 5128–5138. https://doi.org/10.1021/ma9005318
  • Ruslan, R., Pekey, A., Iqbal, M., Dewi, A., & Djamaan, A. (2018). Characterization of Bacillus sp. ITP 10.2.1 as degrading-bacteria of polyethylene terephthalate (PET) synthetic plastic. International Research Journal of Pharmacy, 9(11), 56–59. https://doi.org/10.7897/2230-8407.0911258
  • Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8. https://doi.org/10.1007/s10965-019-1973-4
  • Satti, S. M., Shah, A. A., Auras, R., & Marsh, T. L. (2017). Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polymer Degradation and Stability, 144, 392–400. https://doi.org/10.1016/j.polymdegradstab.2017.08.023
  • Sayyed, R. Z., Wani, S. J., Alarfaj, A. A., Syed, A., & El-Enshasy, H. A. (2020). Production, purification and evaluation of biodegradation potential of PHB depolymerase of Stenotrophomonas sp. RZS7. PLoS ONE, 15(1), e0220095. https://doi.org/10.1371/journal.pone.0220095
  • Skariyachan, S., Megha, M., Kini, M. N., Mukund, K. M., Rizvi, A., & Vasist, K. (2015). Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187, 4174. https://doi.org/10.1007/s10661-014-4174-y
  • Soong, Y. V., Sobkowicz, M. J., & Xie, D. (2022). Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering, 9(3), 98. https://doi.org/10.3390/bioengineering9030098
  • Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., & Oda, K. (2019). Biodegradation of PET: Current status and application aspects. ACS Catalysis, 9, 4089–4105. https://doi.org/10.1021/acscatal.8b05171 Tokiwa, Y., & Suzuki, T. (1977). Hydrolysis of polyesters by lipases. Nature, 270, 76–78. https://doi.org/10.1038/270076a0
  • Vázquez-Alcántara, L., Oliart-Ros, R. M., García-Bórquez, A., & Peña-Montes, C. (2021). Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiology Spectrum, 9(3), e00976-21. https://doi.org/10.1128/Spectrum.00976-21
  • Venkatachalam, S., Shilpa, G., Jayprakash, V., Prashant, R., Krishna, R., & Anil, K. (2012). Degradation and recyclability of poly (ethylene terephthalate). In Polyester. https://doi.org/10.5772/48612
  • Webb, H. K., Crawford, R. J., Sawabe, T., & Ivanova, E. P. (2009). Poly (ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes and Environments, 24(1), 39–42. https://doi.org/10.1264/jsme2.me08538
  • Wei, R., Oeser, T., Then, J., Kühn, N., Barth, M., Schmidt, J., et al. (2014). Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 4, Article 44. https://doi.org/10.1186/s13568-014-0044-9
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esma Ceylan 0000-0002-5559-8869

Aleyna Nalcaoglu Senocak 0000-0003-2528-8744

Dilsat Nigar Colak 0000-0001-9544-3733

Ali Osman Beldüz 0000-0003-2240-7568

Kadriye İnan 0000-0002-5909-588X

Nuran Kahriman 0000-0001-9729-433X

Sabriye Çanakçı 0000-0003-0132-7198

Gönderilme Tarihi 30 Temmuz 2025
Kabul Tarihi 20 Ekim 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Ceylan, E., Nalcaoglu Senocak, A., Colak, D. N., … Beldüz, A. O. (2025). Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential. Journal of Apitherapy and Nature, 8(2), 229-252. https://doi.org/10.35206/jan.1749818
AMA Ceylan E, Nalcaoglu Senocak A, Colak DN, vd. Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential. Journal of Apitherapy and Nature. Aralık 2025;8(2):229-252. doi:10.35206/jan.1749818
Chicago Ceylan, Esma, Aleyna Nalcaoglu Senocak, Dilsat Nigar Colak, Ali Osman Beldüz, Kadriye İnan, Nuran Kahriman, ve Sabriye Çanakçı. “Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential”. Journal of Apitherapy and Nature 8, sy. 2 (Aralık 2025): 229-52. https://doi.org/10.35206/jan.1749818.
EndNote Ceylan E, Nalcaoglu Senocak A, Colak DN, Beldüz AO, İnan K, Kahriman N, Çanakçı S (01 Aralık 2025) Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential. Journal of Apitherapy and Nature 8 2 229–252.
IEEE E. Ceylan, A. Nalcaoglu Senocak, D. N. Colak, A. O. Beldüz, K. İnan, N. Kahriman, ve S. Çanakçı, “Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential”, Journal of Apitherapy and Nature, c. 8, sy. 2, ss. 229–252, 2025, doi: 10.35206/jan.1749818.
ISNAD Ceylan, Esma vd. “Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential”. Journal of Apitherapy and Nature 8/2 (Aralık2025), 229-252. https://doi.org/10.35206/jan.1749818.
JAMA Ceylan E, Nalcaoglu Senocak A, Colak DN, Beldüz AO, İnan K, Kahriman N, Çanakçı S. Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential. Journal of Apitherapy and Nature. 2025;8:229–252.
MLA Ceylan, Esma vd. “Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential”. Journal of Apitherapy and Nature, c. 8, sy. 2, 2025, ss. 229-52, doi:10.35206/jan.1749818.
Vancouver Ceylan E, Nalcaoglu Senocak A, Colak DN, Beldüz AO, İnan K, Kahriman N, vd. Isolation of PET-degrading Bacteria from an Old Garbage Dump and Investigation of Their PET-degrading Potential. Journal of Apitherapy and Nature. 2025;8(2):229-52.
  • 23484   ASOS Index