Derleme
BibTex RIS Kaynak Göster

Synthesis and Applications of Carbon Dots from Food and Natural Products: Review

Yıl 2018, Cilt: 1 Sayı: 1, 33 - 37, 01.04.2018

Öz

Carbon dots with less than 10 nm sizes have been
emerged as a fascinating tool in many areas with their non-toxic,
biocompatible, water-soluble and easy synthesis merits. Bioimaging, biosensing,
photocatalysis, drug delivery etc. are some applications of luminescent carbon
dots. Carbon dots may be synthesized from any carbon sources including foods,
food wastes, plants, chemicals, graphene etc. via top-down or bottom up
methods. However, carbon dots can naturally be extracted from some foods, natural
products such as honey, caramels and sugar beet molasses. In this paper, we tried
to focus on synthesis and applications of carbon dots derived from food or
natural products.

Kaynakça

  • Atchudan, R., Edison, T. N. J. I., Chakradhar, D., Perumal, S., Shim, J.J., Lee, Y.R. (2017). Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications, Sensors and Actuators B, 246, 497–509Baker, S.N., Baker, G.A. (2010). Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. 49, 6726–6744Baruah, U., Gogoi, N., Konwar, A., Deka, M,J, Chowdhury, D. & Majumdar, G. (2014). Carbon Dot Based Sensing of Dopamine and Ascorbic Acid, Journal of Nanoparticles (http://dx.doi.org/10.1155/2014/178518)De, B., Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv., 3, 8286–8290Dinc, S. (2016). A simple and green extraction of carbon dots from sugar beet molasses: Biosensor applications. Sugar Industry, 9, 141 ( 1–5).Dinc, S., Kara, M., Demirel Kars, M., Aykül, F., Çiçekci, H., Akkuş, M. (2017). Biocompatible yogurt carbon dots: evaluation of utilization for medical applications. Applied Physics A, 123 (572) (DOI 10.1007/s00339-017-1184-y)Durmuşoğlu, E. G. (2017). Kuantum Nokta, (https://www.metalurji.org.tr/dergi/dergi160/d160_3134.pdf)Gude, V., Das, A., Chatterjee, T. & Mandal, P.K. (2016). Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission, Phys. Chem. Chem. Phys., 18, 28274-28280Himaja, A.L., Karthik, P.S., Sreedhar, B., Singh, S.P. (2014). Synthesis of carbon dots from kitchen waste: Conversion of waste to value added product. Journal of Fluorescence, 24,1767–1773Hoan, B.T., Huan, V.P., Van, N. H., Nguyen, D.Y., Tam, P.D., Nguyen, K.T., Pham, V-H. (2017) Luminescence of lemon‐derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions, Luminescence, 1-7Hu, S., Wei, Z., Chang, Q., Trinchi, A., Yang, J. (2016). A facile and green method towards coal-based fluorescent carbondots with photocatalytic activity, Applied Surface Science, 378, 402-407Huang, G., Chen, X., Wang, C., Zheng, H., Huang, Z., Chen, D. & Xiee, H.(2017). Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications, RSC Adv., 7, 47840–47847Hutton, G. A.M., Martindale, B.J.M., Reisner, E. (2017). Carbon dots as photosensitisers for solar-driven catalysis, Chemical Society Reviews, 46, 6111-6123 Jiang, C., Wu, H., Song, X., Ma, X., Wang, J., Tan, M. (2014). Presence of photoluminescent carbon dots in Nescafe original instant coffee: Applications to bioimaging, Talanta 127, 68–74Kasibabu, B. S.B., D'souza, S.L., Jha, S., Singhal, R.K., Basu, H., Kailas, S.K. (2015). One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells, Analytical Methods, 7, 2373-2378Laber, C.H., Essner, J.B., Scott, T.A., Polo-Parada, L., Baker, G.A. (2016). Domestic pressure cooker as inexpensive hydrothermal vessel: Demonstrated utility for eco-friendly synthesis of non-toxic carbon dots, Nano-Structures & Nano-Objects, 6, 52–58.Li, D., Na, X., Wang, H., Xie, Y., Cong, S., Song, Y., Xu, X., Zhu, B-W.&Tan, M. (2018). Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity, Journal of Agricultural and Food Chemistry, 66, 1569-1575Majumdar, S., Bhattacharjee, T., Thakur, D., Chowdhury, D. (2018). Carbon Dot based Fluorescence sensor for Retinoic acid, Chemistry Select, 3, 673 –677.Mandani, S., Dey, D., Sharma, B., Sarma, T.K. (2017). Natural occurrence of fluorescent carbon dots in honey. Carbon, 119, 569-572Prasannan, A. Imae, T. (2013). One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels, Industrial & Engineering Chemistry Research, 52, 15673−15678.Sahu, S., Behera, B., Maiti, T.K., Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chemical Communication, 48, 8835–8837Sk, M.P., Jaiswal, A., Paul, A., Ghosh, S.S., Chattopadhyay, A. (2012). Presence of amorphous carbon nanoparticles in food caramels. Scientific Reports,383 (2), 1–5Wang, H., Xie, Y., Liu, S., Cong, S., Song, Y., Xu, X. & Tan, M. (2017a). Presence of fluorescent carbon nanoparticles in baked lamb: Their properties and potential application for sensor, Journal of Agricultural and Food Chemistry (DOI: 10.1021/acs.jafc.7b02913)Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., Wang, J. (2016). Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosensors and Bioelectronics, 85, 68-75.Wang, Z., Yuan, F., Li, X., Li, Y., Zhong, H., Fan, L. &Yang. S. (2017b). 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light- Emitting Diodes, Advanced Materials, (DOI: 10.1002/adma.201702910)Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. (2015). Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chemical Communications, 51, 11346-11358Wu, L., Cai, X., Nelson, K. Xing, W., Xia, J., Zhang, R., Stacy, A.,J, Luderer, M., Lanza, M.,G., Wang, L.V., Shen, B. & Pan, D. (2013) A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging, Nano Research, 6(5): 312–325Xu, Q., Kuang, T., Liu, Y., Cai, L., Peng, X., Sreepcad, T.S., Zhao, P., Yu, Z., Li, N. (2016). Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications, Journal of Materials Chemistry B (DOI: 10.1039/C6TB02131J.)Xu, X., Ray R., Gu, Y. Ploehn, J.H., Gearheart, L., Raker, K. & Scrivens, W.A. (2014). Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society, 126, 12736-12737Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., Dou, Y. (2014). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging, Biosensors and Bioelectronics, 60, 292–298Yıldız, O., Sahin, H., Kara, M., Aliyazıcıoğlu, R., Tarhan, Ö., Kolaylı, S. (2010). Maillard Reaksiyonları ve Reaksiyon Ürünlerinin Gıdalardaki Önemi, Akademik Gıda 8(6), 44-51Yu, J., Song, N., Zhang, Y.K., Zhong, S.X., Wang, A.J., Chen, J. (2015). Green preparation of carbon dots by Jinhua bergamot for sensitiveand selective fluorescent detection of Hg2+and Fe3+, Sensors and Actuators B, 214, 29–35.Zhang, J., Yuan, Y., Liang, G. & Yu, S-H. (2015) Scale-Up Synthesis of Fragrant Nitrogen-Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis, Advanced Science, 2, 1500002Zhang, J., Yu, S-H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19 (7), 382-393Zhao, A., Zhaowei, C., Zhao, C., Gao, N., Rena, J., Qua, X. (2015). Recent advances in bioapplications of C-dots, Carbon, 85, 309 – 327Zheng, X.T., Ananthanarayanan, A. Luo, K.Q. & Chen, P. (2015). Glowing Graphene Quantum Dots and Carbon Dots:Properties, Syntheses, and Biological Applications, Materials Views, 11(14), 1620-1636Zhu, L., Yin, Y., Wang, C.F., Chen, S. (2013). Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding, Journal of Material Chemistry C, 1, 4925.Zhu, S., Song, Y. Zhao, X., Shao, J., Zhang, J. & Yang B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Research, 8(2), 355-381Zuo, P., Lu, X., Sun, Z., Guo ,Y., He, H. (2015). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots, Microchim Acta (DOI 10.1007/s00604-015-1705-3)
Yıl 2018, Cilt: 1 Sayı: 1, 33 - 37, 01.04.2018

Öz

Kaynakça

  • Atchudan, R., Edison, T. N. J. I., Chakradhar, D., Perumal, S., Shim, J.J., Lee, Y.R. (2017). Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications, Sensors and Actuators B, 246, 497–509Baker, S.N., Baker, G.A. (2010). Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. 49, 6726–6744Baruah, U., Gogoi, N., Konwar, A., Deka, M,J, Chowdhury, D. & Majumdar, G. (2014). Carbon Dot Based Sensing of Dopamine and Ascorbic Acid, Journal of Nanoparticles (http://dx.doi.org/10.1155/2014/178518)De, B., Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv., 3, 8286–8290Dinc, S. (2016). A simple and green extraction of carbon dots from sugar beet molasses: Biosensor applications. Sugar Industry, 9, 141 ( 1–5).Dinc, S., Kara, M., Demirel Kars, M., Aykül, F., Çiçekci, H., Akkuş, M. (2017). Biocompatible yogurt carbon dots: evaluation of utilization for medical applications. Applied Physics A, 123 (572) (DOI 10.1007/s00339-017-1184-y)Durmuşoğlu, E. G. (2017). Kuantum Nokta, (https://www.metalurji.org.tr/dergi/dergi160/d160_3134.pdf)Gude, V., Das, A., Chatterjee, T. & Mandal, P.K. (2016). Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission, Phys. Chem. Chem. Phys., 18, 28274-28280Himaja, A.L., Karthik, P.S., Sreedhar, B., Singh, S.P. (2014). Synthesis of carbon dots from kitchen waste: Conversion of waste to value added product. Journal of Fluorescence, 24,1767–1773Hoan, B.T., Huan, V.P., Van, N. H., Nguyen, D.Y., Tam, P.D., Nguyen, K.T., Pham, V-H. (2017) Luminescence of lemon‐derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions, Luminescence, 1-7Hu, S., Wei, Z., Chang, Q., Trinchi, A., Yang, J. (2016). A facile and green method towards coal-based fluorescent carbondots with photocatalytic activity, Applied Surface Science, 378, 402-407Huang, G., Chen, X., Wang, C., Zheng, H., Huang, Z., Chen, D. & Xiee, H.(2017). Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications, RSC Adv., 7, 47840–47847Hutton, G. A.M., Martindale, B.J.M., Reisner, E. (2017). Carbon dots as photosensitisers for solar-driven catalysis, Chemical Society Reviews, 46, 6111-6123 Jiang, C., Wu, H., Song, X., Ma, X., Wang, J., Tan, M. (2014). Presence of photoluminescent carbon dots in Nescafe original instant coffee: Applications to bioimaging, Talanta 127, 68–74Kasibabu, B. S.B., D'souza, S.L., Jha, S., Singhal, R.K., Basu, H., Kailas, S.K. (2015). One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells, Analytical Methods, 7, 2373-2378Laber, C.H., Essner, J.B., Scott, T.A., Polo-Parada, L., Baker, G.A. (2016). Domestic pressure cooker as inexpensive hydrothermal vessel: Demonstrated utility for eco-friendly synthesis of non-toxic carbon dots, Nano-Structures & Nano-Objects, 6, 52–58.Li, D., Na, X., Wang, H., Xie, Y., Cong, S., Song, Y., Xu, X., Zhu, B-W.&Tan, M. (2018). Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity, Journal of Agricultural and Food Chemistry, 66, 1569-1575Majumdar, S., Bhattacharjee, T., Thakur, D., Chowdhury, D. (2018). Carbon Dot based Fluorescence sensor for Retinoic acid, Chemistry Select, 3, 673 –677.Mandani, S., Dey, D., Sharma, B., Sarma, T.K. (2017). Natural occurrence of fluorescent carbon dots in honey. Carbon, 119, 569-572Prasannan, A. Imae, T. (2013). One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels, Industrial & Engineering Chemistry Research, 52, 15673−15678.Sahu, S., Behera, B., Maiti, T.K., Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chemical Communication, 48, 8835–8837Sk, M.P., Jaiswal, A., Paul, A., Ghosh, S.S., Chattopadhyay, A. (2012). Presence of amorphous carbon nanoparticles in food caramels. Scientific Reports,383 (2), 1–5Wang, H., Xie, Y., Liu, S., Cong, S., Song, Y., Xu, X. & Tan, M. (2017a). Presence of fluorescent carbon nanoparticles in baked lamb: Their properties and potential application for sensor, Journal of Agricultural and Food Chemistry (DOI: 10.1021/acs.jafc.7b02913)Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., Wang, J. (2016). Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosensors and Bioelectronics, 85, 68-75.Wang, Z., Yuan, F., Li, X., Li, Y., Zhong, H., Fan, L. &Yang. S. (2017b). 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light- Emitting Diodes, Advanced Materials, (DOI: 10.1002/adma.201702910)Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. (2015). Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chemical Communications, 51, 11346-11358Wu, L., Cai, X., Nelson, K. Xing, W., Xia, J., Zhang, R., Stacy, A.,J, Luderer, M., Lanza, M.,G., Wang, L.V., Shen, B. & Pan, D. (2013) A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging, Nano Research, 6(5): 312–325Xu, Q., Kuang, T., Liu, Y., Cai, L., Peng, X., Sreepcad, T.S., Zhao, P., Yu, Z., Li, N. (2016). Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications, Journal of Materials Chemistry B (DOI: 10.1039/C6TB02131J.)Xu, X., Ray R., Gu, Y. Ploehn, J.H., Gearheart, L., Raker, K. & Scrivens, W.A. (2014). Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society, 126, 12736-12737Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., Dou, Y. (2014). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging, Biosensors and Bioelectronics, 60, 292–298Yıldız, O., Sahin, H., Kara, M., Aliyazıcıoğlu, R., Tarhan, Ö., Kolaylı, S. (2010). Maillard Reaksiyonları ve Reaksiyon Ürünlerinin Gıdalardaki Önemi, Akademik Gıda 8(6), 44-51Yu, J., Song, N., Zhang, Y.K., Zhong, S.X., Wang, A.J., Chen, J. (2015). Green preparation of carbon dots by Jinhua bergamot for sensitiveand selective fluorescent detection of Hg2+and Fe3+, Sensors and Actuators B, 214, 29–35.Zhang, J., Yuan, Y., Liang, G. & Yu, S-H. (2015) Scale-Up Synthesis of Fragrant Nitrogen-Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis, Advanced Science, 2, 1500002Zhang, J., Yu, S-H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19 (7), 382-393Zhao, A., Zhaowei, C., Zhao, C., Gao, N., Rena, J., Qua, X. (2015). Recent advances in bioapplications of C-dots, Carbon, 85, 309 – 327Zheng, X.T., Ananthanarayanan, A. Luo, K.Q. & Chen, P. (2015). Glowing Graphene Quantum Dots and Carbon Dots:Properties, Syntheses, and Biological Applications, Materials Views, 11(14), 1620-1636Zhu, L., Yin, Y., Wang, C.F., Chen, S. (2013). Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding, Journal of Material Chemistry C, 1, 4925.Zhu, S., Song, Y. Zhao, X., Shao, J., Zhang, J. & Yang B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Research, 8(2), 355-381Zuo, P., Lu, X., Sun, Z., Guo ,Y., He, H. (2015). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots, Microchim Acta (DOI 10.1007/s00604-015-1705-3)
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Derleme Makaleleri
Yazarlar

Saliha Dinç

Meryem Kara

Yayımlanma Tarihi 1 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 1

Kaynak Göster

APA Dinç, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products: Review. Journal of Apitherapy and Nature, 1(1), 33-37.
AMA Dinç S, Kara M. Synthesis and Applications of Carbon Dots from Food and Natural Products: Review. J.Apit.Nat. Nisan 2018;1(1):33-37.
Chicago Dinç, Saliha, ve Meryem Kara. “Synthesis and Applications of Carbon Dots from Food and Natural Products: Review”. Journal of Apitherapy and Nature 1, sy. 1 (Nisan 2018): 33-37.
EndNote Dinç S, Kara M (01 Nisan 2018) Synthesis and Applications of Carbon Dots from Food and Natural Products: Review. Journal of Apitherapy and Nature 1 1 33–37.
IEEE S. Dinç ve M. Kara, “Synthesis and Applications of Carbon Dots from Food and Natural Products: Review”, J.Apit.Nat., c. 1, sy. 1, ss. 33–37, 2018.
ISNAD Dinç, Saliha - Kara, Meryem. “Synthesis and Applications of Carbon Dots from Food and Natural Products: Review”. Journal of Apitherapy and Nature 1/1 (Nisan 2018), 33-37.
JAMA Dinç S, Kara M. Synthesis and Applications of Carbon Dots from Food and Natural Products: Review. J.Apit.Nat. 2018;1:33–37.
MLA Dinç, Saliha ve Meryem Kara. “Synthesis and Applications of Carbon Dots from Food and Natural Products: Review”. Journal of Apitherapy and Nature, c. 1, sy. 1, 2018, ss. 33-37.
Vancouver Dinç S, Kara M. Synthesis and Applications of Carbon Dots from Food and Natural Products: Review. J.Apit.Nat. 2018;1(1):33-7.
  • 23484   ASOS Index