Lityum İyon Pillerin Tarihten Bugüne Gelişimi ve Son Teknolojide Gelinen Nokta
Yıl 2024,
Cilt: 3 Sayı: 2, 83 - 94, 12.12.2024
Hüseyin Pehlivan
,
Erdinç Öz
,
Muhammet Yıldırım
Öz
Bu derleme makalesi, lityum iyon pillerin antik çağlardan günümüze kadar olan tarihsel gelişimini, çalışma prensiplerini, avantajlarını, dezavantajlarını ve gelecekteki potansiyelini incelemektedir. Lityum iyon piller, yüksek enerji yoğunluğu, uzun çevrim ömrü ve düşük kendi kendine deşarj oranı gibi avantajları sayesinde taşınabilir elektronik cihazlardan elektrikli araçlara ve yenilenebilir enerji depolama sistemlerine kadar çeşitli alanlarda kullanılmaktadır. Bu teknolojinin geleceği, malzeme bilimi, pil tasarımı ve üretim süreçlerindeki yeniliklerle şekillenecektir. Katı hal piller, lityum-sülfür piller ve sodyum-iyon piller gibi alternatif teknolojiler de gelecekte enerji depolama alanında önemli bir rol oynayabilir.
Kaynakça
- Abdelaal, M. M., & Alkhedher, M. (2024). Dual optimization of LiFePO4 cathode performance using manganese substitution and a hybrid lithiated Nafion-modified PEDOT:PSS coating layer for lithium-ion batteries. Electrochimica Acta, 506, 145050. https://doi.org/10.1016/J.ELECTACTA.2024.145050
- Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N., & Dees, D. W. (2017). Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 342, 733-740. https://doi.org/10.1016/J.JPOWSOUR.2016.12.069
- Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature 2008 451:7179, 451(7179), 652-657. https://doi.org/10.1038/451652a
- Arya, S., & Verma, S. (2020). Nickel‐Metal Hydride (Ni‐MH) Batteries. Içinde Rechargeable Batteries. https://doi.org/10.1002/9781119714774.ch8
- Aslam, M. K., Niu, Y., Hussain, T., Tabassum, H., Tang, W., Xu, M., & Ahuja, R. (2021). How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 86, 106142. https://doi.org/10.1016/J.NANOEN.2021.106142
- Babu, B. (2024). Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 67, 103261. https://doi.org/10.1016/J.ENSM.2024.103261
- Bates, A. M., Preger, Y., Torres-Castro, L., Harrison, K. L., Harris, S. J., & Hewson, J. (2022). Are solid-state batteries safer than lithium-ion batteries? Içinde Joule (C. 6, Sayı 4). https://doi.org/10.1016/j.joule.2022.02.007
- Bi, C. X., Hou, L. P., Li, Z., Zhao, M., Zhang, X. Q., Li, B. Q., Zhang, Q., & Huang, J. Q. (2023). Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 4. https://doi.org/10.34133/energymatadv.0010
- Castillo, J., Coca-Clemente, J. A., Rikarte, J., Sáenz De Buruaga, A., Santiago, A., & Li, C. (2023). Recent progress on lithium anode protection for lithium-sulfur batteries: Review and perspective. Içinde APL Materials (C. 11, Sayı 1). https://doi.org/10.1063/5.0107648
- Cecchini, R., & Pelosi, G. (1992). From the Historian--Alessandro Volta and his battery. IEEE Antennas and Propagation Magazine, 34(2). https://doi.org/10.1109/74.134307
- Cen, Y., Sisson, R. D., Qin, Q., & Liang, J. (2018). Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries. C 2018, Vol. 4, Page 18, 4(1), 18. https://doi.org/10.3390/C4010018
- Chawla, N., Bharti, N., & Singh, S. (2019). Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, Vol. 5, Page 19, 5(1), 19. https://doi.org/10.3390/BATTERIES5010019
- Choi, S. Il, Jung, E. J., Park, M., Shin, H. S., Huh, S., & Won, Y. S. (2020). Phase-dependent performance of lotus-root shaped TiO2 anode for lithium-ion batteries (LIBs). Applied Surface Science, 508, 145237. https://doi.org/10.1016/J.APSUSC.2019.145237
- Chombo, P. V., & Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649. https://doi.org/10.1016/J.JPOWSOUR.2020.228649
- Costa, C. M., Gonçalves, R., & Lanceros-Méndez, S. (2019). Advances in Cathode Nanomaterials for Lithium-Ion Batteries. Içinde Nanostructured Materials for Next-Generation Energy Storage and Conversion (ss. 105-145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_3
- Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 40(12). https://doi.org/10.1557/mrs.2015.259
- Das, D., Manna, S., & Puravankara, S. (2023). Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Içinde Batteries (C. 9, Sayı 4). https://doi.org/10.3390/batteries9040193
- Dong, B., Poletayev, A. D., Cottom, J. P., Castells-Gil, J., Spencer, B. F., Li, C., Zhu, P., Chen, Y., Price, J. M., Driscoll, L. L., Allan, P. K., Kendrick, E., Islam, M. S., & Slater, P. R. (2024). Effects of sulfate modification of stoichiometric and lithium-rich LiNiO2 cathode materials. Journal of Materials Chemistry A, 12(19), 11390-11402. https://doi.org/10.1039/D4TA00284A
- Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2021). Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems. Applied Sciences 2021, Vol. 11, Page 1099, 11(3), 1099. https://doi.org/10.3390/APP11031099
- Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/SCIENCE.1212741/SUPPL_FILE/DUNN-SOM.PDF
- El Kharbachi, A., Zavorotynska, O., Latroche, M., Cuevas, F., Yartys, V., & Fichtner, M. (2020). Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 817, 153261. https://doi.org/10.1016/J.JALLCOM.2019.153261
- Fan, X., Sun, W., Meng, F., Xing, A., & Liu, J. (2018). Advanced chemical strategies for lithium–sulfur batteries: A review. Içinde Green Energy and Environment (C. 3, Sayı 1). https://doi.org/10.1016/j.gee.2017.08.002
- Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., Omar, N., & Van Mierlo, J. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. https://doi.org/10.1016/J.APENERGY.2019.113343
- Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176. https://doi.org/10.1021/JA3091438/ASSET/IMAGES/JA-2012-091438_M014.GIF
- Guo, B., Ji, X., Wang, W., Chen, X., Wang, P., Wang, L., & Bai, J. (2021). Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B: Engineering, 208, 108598. https://doi.org/10.1016/J.COMPOSITESB.2020.108598
- Haregewoin, A. M., Wotango, A. S., & Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 9(6), 1955-1988. https://doi.org/10.1039/C6EE00123H
- Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 2019 575:7781, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5
- Iturrondobeitia, A., Aguesse, F., Genies, S., Waldmann, T., Kasper, M., Ghanbari, N., Wohlfahrt-Mehrens, M., & Bekaert, E. (2017). Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application. Journal of Physical Chemistry C, 121(40). https://doi.org/10.1021/acs.jpcc.7b05416
- Kaushik, S., Chand, P., & Sharma, S. (2024). High-performance pristine ZIF-67 asymmetric supercapacitor device with excellent energy and power density for energy storage application. Electrochimica Acta, 497, 144565. https://doi.org/10.1016/J.ELECTACTA.2024.144565
- Kim, H. J., Krishna, T. N. V., Zeb, K., Rajangam, V., Muralee Gopi, C. V. V., Sambasivam, S., Raghavendra, K. V. G., & Obaidat, I. M. (2020). A comprehensive review of li-ion battery materials and their recycling techniques. Içinde Electronics (Switzerland) (C. 9, Sayı 7). https://doi.org/10.3390/electronics9071161
- Kordesch, K., & Taucher-Mautner, W. (2009). Primary Batteries - Aqueous Systems | Leclanché and Zinc-Carbon. Içinde Encyclopedia of Electrochemical Power Sources. https://doi.org/10.1016/B978-044452745-5.00097-6
- Lanjan, A., Ghalami Choobar, B., & Amjad-Iranagh, S. (2020). Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4. Journal of Solid State Electrochemistry, 24(1), 157-171. https://doi.org/10.1007/S10008-019-04480-6/TABLES/5
- Larcher, D., & Tarascon, J. M. (2014). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2014 7:1, 7(1), 19-29. https://doi.org/10.1038/nchem.2085
- Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports 2015 5:1, 5(1), 1-12. https://doi.org/10.1038/srep12967
- Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/ADMA.201800561
- Li, T., Huang, M., Bai, X., & Wang, Y. X. (2023). Metal–air batteries: A review on current status and future applications. Içinde Progress in Natural Science: Materials International (C. 33, Sayı 2). https://doi.org/10.1016/j.pnsc.2023.05.007
- Liang, H., Zuo, X., Zhang, L., Huang, W., Chen, Q., Zhu, T., Liu, J., & Nan, J. (2020). Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of The Electrochemical Society, 167(9), 090520. https://doi.org/10.1149/1945-7111/AB8803
- Lu, X., & Anariba, F. (2014). Fostering innovation through an active learning activity inspired by the baghdad battery. Journal of Chemical Education, 91(11), 1929-1933. https://doi.org/10.1021/ED400869C/SUPPL_FILE/ED400869C_SI_002.DOCX
- Luo, J., Zhao, X., Wu, J., Jang, H. D., Kung, H. H., & Huang, J. (2012). Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. Journal of Physical Chemistry Letters, 3(13), 1824-1829. https://doi.org/10.1021/JZ3006892/SUPPL_FILE/JZ3006892_SI_001.PDF
- Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., Zhou, J., Lu, Y., & Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Içinde Advanced Energy Materials (C. 11, Sayı 2). https://doi.org/10.1002/aenm.202000982
- Marino, C., Boulet, L., Gaveau, P., Fraisse, B., & Monconduit, L. (2012). Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. Journal of Materials Chemistry, 22(42), 22713-22720. https://doi.org/10.1039/C2JM34562E
- McDowell, M. T., Lee, S. W., Nix, W. D., & Cui, Y. (2013). 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Advanced Materials, 25(36), 4966-4985. https://doi.org/10.1002/ADMA.201301795
- Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
- Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/J.EST.2023.109048
- Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/J.MATTOD.2014.10.040
- Niu, H., Zhang, N., Lu, Y., Zhang, Z., Li, M., Liu, J., Song, W., Zhao, Y., & Miao, Z. (2024). Strategies toward the development of high-energy-density lithium batteries. Journal of Energy Storage, 88, 111666. https://doi.org/10.1016/J.EST.2024.111666
- Olabi, A. G., Sayed, E. T., Wilberforce, T., Jamal, A., Alami, A. H., Elsaid, K., Rahman, S. M. A., Shah, S. K., & Abdelkareem, M. A. (2021). Metal-air batteries—a review. Içinde Energies (C. 14, Sayı 21). https://doi.org/10.3390/en14217373
- Orangi, S., Manjong, N., Clos, D. P., Usai, L., Burheim, O. S., & Strømman, A. H. (2024). Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. Journal of Energy Storage, 76, 109800. https://doi.org/10.1016/J.EST.2023.109800
- Ozanam, F., & Rosso, M. (2016). Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 213, 2-11. https://doi.org/10.1016/J.MSEB.2016.04.016
- Pan, F., & Wang, Q. (2015). Redox species of redox flow batteries: A review. Içinde Molecules (C. 20, Sayı 11). https://doi.org/10.3390/molecules201119711
- Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li-Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/AENM.202003456
- Rahman, Md. A., Wang, X., & Wen, C. (2013). High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society, 160(10). https://doi.org/10.1149/2.062310jes
- Rajkamal, A., & Thapa, R. (2019). Carbon Allotropes as Anode Material for Lithium-Ion Batteries. Advanced Materials Technologies, 4(10), 1900307. https://doi.org/10.1002/ADMT.201900307
- Ramkumar, M. S., Reddy, C. S. R., Ramakrishnan, A., Raja, K., Pushpa, S., Jose, S., & Jayakumar, M. (2022). Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Advances in Materials Science and Engineering, 2022(1), 3379574. https://doi.org/10.1155/2022/3379574
- Sasaki, T., Ukyo, Y., & Novák, P. (2013). Memory effect in a lithium-ion battery. Nature Materials 2013 12:6, 12(6), 569-575. https://doi.org/10.1038/nmat3623
- Schmaltz, T., Hartmann, F., Wicke, T., Weymann, L., Neef, C., & Janek, J. (2023). A Roadmap for Solid-State Batteries. Advanced Energy Materials, 13(43). https://doi.org/10.1002/aenm.202301886
- Tsai, P. J., & Chan, S. L. I. (2013). Nickel-based batteries: materials and chemistry. Içinde Electricity Transmission, Distribution and Storage Systems. https://doi.org/10.1533/9780857097378.3.309
- Ventosa, E., Löffler, T., La Mantia, F., & Schuhmann, W. (2016). Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing. Chemical Communications, 52(77), 11524-11526. https://doi.org/10.1039/C6CC06070F
- Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511-2517. https://doi.org/10.1002/SMLL.201403579
- Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., & Lu, L. (2019). Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 1(2). https://doi.org/10.1016/j.nanoms.2019.02.007
- Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: A review. Içinde Journal of Applied Electrochemistry (C. 41, Sayı 10). https://doi.org/10.1007/s10800-011-0348-2
- Whittingham, M. S. (1974). Electrointercalation in transition-metal disulphides. Journal of the Chemical Society, Chemical Communications, 9, 328-329. https://doi.org/10.1039/C39740000328
- Winter, M., Barnett, B., & Xu, K. (2018). Before Li Ion Batteries. Chemical Reviews, 118(23), 11433-11456. https://doi.org/10.1021/ACS.CHEMREV.8B00422/ASSET/IMAGES/LARGE/CR-2018-00422Q_0014.JPEG
- Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J., & Bai, J. (2022). Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 246, 110232. https://doi.org/10.1016/J.COMPOSITESB.2022.110232
- Yuan, H., Luan, J., Liu, J., & Zhong, C. (2024). Hail to Daniell Cell: From Electrometallurgy to Electrochemical Energy Storage. Içinde Advanced Functional Materials (C. 34, Sayı 33). https://doi.org/10.1002/adfm.202400289
- Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., Cui, G., & Chen, L. (2016). All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164. https://doi.org/10.1016/J.ENSM.2016.07.003
- Zhang, J., Huang, H., Zhang, G., Dai, Z., Wen, Y., & Jiang, L. (2024). Cycle life studies of lithium-ion power batteries for electric vehicles: A review. Journal of Energy Storage, 93, 112231. https://doi.org/10.1016/J.EST.2024.112231
- Zhang, S. S. (2007). A review on the separators of liquid electrolyte Li-ion batteries. Içinde Journal of Power Sources (C. 164, Sayı 1). https://doi.org/10.1016/j.jpowsour.2006.10.065
- Zhao, E., Gu, Y., Fang, S., Yang, L., & Hirano, S. I. (2021). Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials, 4(3), 2419-2429. https://doi.org/10.1021/ACSAEM.0C02946/ASSET/IMAGES/LARGE/AE0C02946_0009.JPEG
- Zhu, L., & Chen, M. (2020). Research on spent LiFePO4 electric vehicle battery disposal and its life cycle inventory collection in China. International Journal of Environmental Research and Public Health, 17(23). https://doi.org/10.3390/ijerph17238828
- Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/J.RSER.2018.03.002