Research Article
BibTex RIS Cite

Enhanced Lipid Yield from Olive-Mill Wastewater by Yarrowia lipolytica NRRL YB-423

Year 2025, Volume: 6 Issue: 1, 32 - 40, 26.03.2025
https://doi.org/10.56430/japro.1574738

Abstract

Lipid production from olive-mill wastewater (OMW) by Yarrowia lipolytica NRRL YB-423 was optimized (biomass concentration and lipid yield based on dry cell weight) using multi-response criteria based on the Taguchi orthogonal array. Sixteen experimental runs were performed using the L16 orthogonal array. Dilution rates of OMW (15, 30, 45, and 60%), Tween 80 (0, 0.2, 0.4, and 0.6%), sodium chloride (NaCl; 0, 1, 2, and 3%), and sterility were selected as factors. The significance of the parameters was determined using analysis of variance (ANOVA). The effects of all factors on the lipid yield were statistically significant (p<0.05). The results showed that sterility had a maximum contribution of 48.12% to lipid yield. The highest lipid yield (40.88 %) was achieved in sterile medium supplemented with 15% diluted OMW, 0.6% Tween 80, and 3% NaCl.

References

  • Abrunhosa, L., Oliveira, F., Dantas, D., Gonçalves, C., & Belo, I. (2013). Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess and Biosystems Engineering, 36, 285-291. https://doi.org/10.1007/s00449-012-0783-4
  • Aggoun, M., Arhab, R., Cornu, A., Portelli, J., Barkat, M., & Graulet, B. (2016). Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chemistry, 209, 72-80. https://doi.org/10.1016/j.foodchem.2016.04.034
  • Alique, D., Bruni, G., Sanz, R., Calles, J. A., & Tosti, S. (2020). Ultra-pure hydrogen via co-valorization of olive mill wastewater and bioethanol in Pd-membrane reactors. Processes, 8(2), 219. https://doi.org/10.3390/pr8020219
  • Arous, F., Frikha, F., Triantaphyllidou, I. E., Aggelis, G., Nasri, M., & Mechichi, T. (2016). Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 133, 899-909. https://doi.org/10.1016/j.jclepro.2016.06.040
  • Ayadi, K., Meziane, M., Rouam, D., Bouziane, M. N., & El-Miloudi, K. (2022). Olive mill wastewater for bioethanol production using immobilised cells. Kemija u Industriji: Časopis Kemičara i Kemijskih Inženjera Hrvatske, 71(1-2), 21-28. https://doi.org/10.15255/KUI.2021.015
  • Barbera, A. C., Maucieri, C., Cavallaro, V., Ioppolo, A., & Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management, 119, 43-53. https://doi.org/10.1016/j.agwat.2012.12.009
  • Bellou, S., Makri, A., Sarris, D., Michos, K., Rentoumi, P., Celik, A., Papanikolaou, S., & Aggelis, G. (2014). The olive mill wastewater as substrate for single cell oil production by Zygomycetes. Journal of Biotechnology, 170, 50-59. https://doi.org/10.1016/j.jbiotec.2013.11.015
  • Benhoula, M., Azzouz, Z., Bettache, A., Le Roes-Hill, M., Djoudi, W., Maibeche, R., Hamma, S., Bensaad, M. S., Amghar, Z., Boudjelal, A., Benallaoua, S., & Boucherba, N. (2023). Olive mill wastewater biodegradation for bacterial lipase production using a response surface methodology. Biomass Conversion and Biorefinery, 14, 1187-1200. https://doi.org/10.1007/s13399-023-04051-w
  • Buchmann, C., Felten, A., Peikert, B., Muñoz, K., Bandow, N., Dag, A., & Schaumann, G. E. (2015). Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant and Soil, 386, 99-112. https://doi.org/10.1007/s11104-014-2241-3
  • Chatzifragkou, A., Petrou, I., Gardeli, C., Komaitis, M., & Papanikolaou, S. (2011). Effect of Origanum vulgare L. essential oil on growth and lipid profile of Yarrowia lipolytica cultivated on glycerol-based media. Journal of the American Oil Chemists’ Society, 88, 1955-1964. https://doi.org/10.1007/s11746-011-1870-4
  • Dahmen‐Ben Moussa, I., Maalej, A., Masmoudi, M. A., Feki, F., Choura, S., Baccar, N., Jelail, L., Karray, F., Chamkha, M., & Sayadi, S. (2021). Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. Journal of the Science of Food and Agriculture, 101(13), 5508-5519. https://doi.org/10.1002/jsfa.11200
  • Diamantis, I., Melanouri, E. M., Dedousi, M., Panagopoulou, I., Papanikolaou, S., Stoforos, N. G., & Diamantopoulou, P. (2022). Sustainable and eco-friendly conversions of olive mill wastewater-based media by Pleurotus pulmonarius cultures. Fermentation, 8(3), 129. https://doi.org/10.3390/fermentation8030129
  • Dias, B., Lopes, M., Ramôa, R., Pereira, A. S., & Belo, I. (2021). Candida tropicalis as a promising oleaginous yeast for olive mill wastewater bioconversion. Energies, 14(3), 640. https://doi.org/10.3390/en14030640
  • Dourou, M., Kancelista, A., Juszczyk, P., Sarris, D., Bellou, S., Triantaphyllidou, I. E., Rywińska, A., Papanikolaou, S., & Aggelis, G. (2016). Bioconversion of olive mill wastewater into high-added value products. Journal of Cleaner Production, 139, 957-969. https://doi.org/10.1016/j.jclepro.2016.08.133
  • El-Fadaly, H. A., El-Naggar, N. E., & Marwan, E. M. (2009). Single cell oil production by an oleaginous yeast strain in a low-cost cultivation medium. Research Journal of Microbiology, 4(8), 301-313. https://doi.org/10.3923/jm.2009.301.313
  • Enshaeieh, M., Nahvi, I., & Madani, M. (2014). Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. International Journal of Environmental Science and Technology, 11, 1691-1698. https://doi.org/10.1007/s13762-013-0373-2
  • Fabiszewska, A., Misiukiewicz-Stępień, P., Paplińska-Goryca, M., Zieniuk, B., & Białecka-Florjańczyk, E. (2019). An insight into storage lipid synthesis by Yarrowia lipolytica yeast relating to lipid and sugar substrates metabolism. Biomolecules, 9(11), 685. https://doi.org/10.3390/biom9110685
  • Fattoum, H., Cherif, A. O., Trabelsi, S., & Messaouda, M. B. (2023). Identification of phenolic compounds extracted from OMW Using LC-MS. Journal of Oleo Science, 72(12), 1113-1123. https://doi.org/10.5650/jos.ess23109
  • Filippousi, R., Diamantopoulou, P., Stavropoulou, M., Makris, D. P., & Papanikolaou, S. (2022). Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochemistry, 123, 52-62. https://doi.org/10.1016/j.procbio.2022.10.008
  • Flouri, F., Sotirchos, D., Ioannidou, S., & Balis, C. (1996). Decolorization of olive oil mill liquid wastes by chemical and biological means. International Biodeterioration & Biodegradation, 38(3-4), 189-192. https://doi.org/10.1016/S0964-8305(96)00050-9
  • Hamimed, S., Landoulsi, A., & Chatti, A. (2021). The bright side of olive mill wastewater: Valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology, 18, 4053-4074. https://doi.org/10.1007/s13762-021-03145-0
  • He, M., Li, L., Zhou, W., Huang, H., Ma, Q., & Gong, Z. (2025). Non-sterile fermentation for enhanced lipid production by Cutaneotrichosporon oleaginosum using bifunctional benzamide as selective antibacterial agent and unique nitrogen source. Bioresource Technology, 418, 131926. https://doi.org/10.1016/j.biortech.2024.131926
  • Herrero, O. M., Villalba, M. S., Lanfranconi, M. P., & Alvarez, H. M. (2018). Rhodococcus bacteria as a promising source of oils from olive mill wastes. World Journal of Microbiology and Biotechnology, 34, 114. https://doi.org/10.1007/s11274-018-2499-3
  • Huang, C., Chen, X. F., Xiong, L., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129-139. https://doi.org/10.1016/j.biotechadv.2012.08.010
  • ISO 1841-1. (1996). Meat and meat products-determination of chloride content-part 1: Volhard method. https://standards.iteh.ai/catalog/standards/iso/f7a5c841-dbb3-46c1-a30d-bfab93312a26/iso-1841-1-1996
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671. https://doi.org/10.3390/pr8060671
  • Kuttiraja, M., Douha, A., Valéro, J. R., & Tyagi, R. D. (2016). Elucidating the effect of glycerol concentration and C/N ratio on lipid production using Yarrowia lipolytica SKY7. Applied Biochemistry and Biotechnology, 180, 1586-1600. https://doi.org/10.1007/s12010-016-2189-2
  • Moustogianni, A., Bellou, S., Triantaphyllidou, I. E., & Aggelis, G. (2014). Feasibility of raw glycerol conversion into single cell oil by Zygomycetes under non‐aseptic conditions. Biotechnology and Bioengineering, 112(4), 827-831. https://doi.org/10.1002/bit.25482
  • Ochando-Pulido, J. M., Pimentel-Moral, S., Verardo, V., & Martinez-Ferez, A. (2017). A focus on advanced physico-chemical processes for olive mill wastewater treatment. Separation and Purification Technology, 179, 161-174. http://doi.org/10.1016/j.seppur.2017.02.004
  • Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., & Syldatk, C. (2016). Production strategies and applications of microbial single cell oils. Frontiers in Microbiology, 7, 1539. https://doi.org/10.3389/fmicb.2016.01539
  • Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2008). Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technology, 99(7), 2419-2428. https://doi.org/10.1016/j.biortech.2007.05.005
  • Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: A review. Journal of Chemical Technology & Biotechnology, 81(9), 1475-1485. https://doi.org/10.1002/jctb.1553
  • Paredes, C., Cegarra, J., Roig, A., Sánchez-Monedero, M. A., & Bernal, M. P. (1999). Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresource Technology, 67(2), 111-115. https://doi.org/10.1016/S0960-8524(98)00106-0
  • Polburee, P., & Limtong, S. (2020). Economical lipid production from crude glycerol using Rhodosporidiobolus fluvialis DMKU-RK253 in a two-stage cultivation under non-sterile conditions. Biomass and Bioenergy, 138, 105597. https://doi.org/10.1016/j.biombioe.2020.105597
  • Qwele, K., Hugo, A., Oyedemi, S. O., Moyo, B., Masika, P. J., & Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science, 93(3), 455-462. http://doi.org/10.1016/j.meatsci.2012.11.009
  • Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960-969. https://doi.org/10.1016/j.wasman.2005.07.024
  • Roila, R., Primavilla, S., Ranucci, D., Galarini, R., Paoletti, F., Altissimi, C., Valiani, A., & Branciari, R. (2024). The effects of encapsulation on the in vitro anti-clostridial activity of olive mill wastewater polyphenolic extracts: A promising strategy to limit microbial growth in food systems. Molecules, 29(7), 1441. https://doi.org/10.3390/molecules29071441
  • Sarris, D., Galiotou‐Panayotou, M., Koutinas, A. A., Komaitis, M., & Papanikolaou, S. (2011). Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater‐based media. Journal of Chemical Technology and Biotechnology, 86(11), 1439-1448. https://doi.org/10.1002/jctb.2658
  • Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A. A., & Papanikolaou, S. (2013). Conversions of olive mill wastewater‐based media by Saccharomyces cerevisiae through sterile and non‐sterile bioprocesses. Journal of Chemical Technology and Biotechnology, 88(5), 958-969. https://doi.org/10.1002/jctb.3931
  • Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A. A., & Papanikolaou, S. (2014). Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 56, 83-93. https://doi.org/10.1016/j.indcrop.2014.02.040
  • Sarris, D., Stoforos, N. G., Mallouchos, A., Kookos, I. K., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Production of added‐value metabolites by Yarrowia lipolytica growing in olive mill wastewater‐based media under aseptic and non‐aseptic conditions. Engineering in Life Sciences, 17, 695-709. https://doi.org/10.1002/elsc.201600225
  • Sarris, D., Rapti, A., Papafotis, N., Koutinas, A. A., & Papanikolaou, S. (2019). Production of added-value chemical compounds through bioconversions of olive-mill wastewaters blended with crude glycerol by a Yarrowia lipolytica strain. Molecules, 24(2), 222. https://doi.org/10.3390/molecules24020222
  • Sarris, D., Tsouko, E., Photiades, A., Tchakouteu, S. S., Diamantopoulou, P., & Papanikolaou, S. (2023a). Growth response of non-conventional yeasts on sugar-rich media: Part 2: Citric acid production and circular-oriented valorization of glucose-enriched olive mill wastewaters using novel Yarrowia lipolytica strains. Microorganisms, 11(9), 2243. https://doi.org/10.3390/microorganisms11092243
  • Sarris, D., Tsouko, E., Kothri, M., Anagnostou, M., Karageorgiou, E., & Papanikolaou, S. (2023b). Upgrading major waste streams derived from the biodiesel industry and olive mills via microbial bioprocessing with non-conventional Yarrowia lipolytica strains. Fermentation, 9(3), 251. https://doi.org/10.3390/fermentation9030251
  • Singh, S., Bharadwaj, T., Verma, D., & Dutta, K. (2022). Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564T. Chemosphere, 308(Part 2), 136269. https://doi.org/10.1016/j.chemosphere.2022.136269
  • Sipiczki, G., Micevic, S. S., Kohari-Farkas, C., Nagy, E. S., Nguyen, Q. D., Gere, A., & Bujna, E. (2024). Effects of olive oil and Tween 80 on production of lipase by Yarrowia yeast strains. Processes, 12(6), 1206. https://doi.org/10.3390/pr12061206
  • Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S., & Hayashi, M. (2011). Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. Journal of Bioscience and Bioengineering, 111(4), 420-424. https://doi.org/10.1016/j.jbiosc.2010.12.010
  • Tzirita, M., Kremmyda, M., Sarris, D., Koutinas, A. A., & Papanikolaou, S. (2019). Effect of salt addition upon the production of metabolic compounds by Yarrowia lipolytica cultivated on biodiesel-derived glycerol diluted with olive-mill wastewaters. Energies, 12(19), 3649. https://doi.org/10.3390/en12193649
  • Yu, X., Dong, T., Zheng, Y., Miao, C., & Chen, S. (2015). Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction. European Journal of Lipid Science and Technology, 117(5), 730-737. https://doi.org/10.1002/ejlt.201400195
  • Zhang, S., Jagtap, S. S., Deewan, A., & Rao, C. V. (2019). pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. Journal of Biotechnology, 290, 10-15. https://doi.org/10.1016/j.jbiotec.2018.10.012
Year 2025, Volume: 6 Issue: 1, 32 - 40, 26.03.2025
https://doi.org/10.56430/japro.1574738

Abstract

References

  • Abrunhosa, L., Oliveira, F., Dantas, D., Gonçalves, C., & Belo, I. (2013). Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess and Biosystems Engineering, 36, 285-291. https://doi.org/10.1007/s00449-012-0783-4
  • Aggoun, M., Arhab, R., Cornu, A., Portelli, J., Barkat, M., & Graulet, B. (2016). Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chemistry, 209, 72-80. https://doi.org/10.1016/j.foodchem.2016.04.034
  • Alique, D., Bruni, G., Sanz, R., Calles, J. A., & Tosti, S. (2020). Ultra-pure hydrogen via co-valorization of olive mill wastewater and bioethanol in Pd-membrane reactors. Processes, 8(2), 219. https://doi.org/10.3390/pr8020219
  • Arous, F., Frikha, F., Triantaphyllidou, I. E., Aggelis, G., Nasri, M., & Mechichi, T. (2016). Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 133, 899-909. https://doi.org/10.1016/j.jclepro.2016.06.040
  • Ayadi, K., Meziane, M., Rouam, D., Bouziane, M. N., & El-Miloudi, K. (2022). Olive mill wastewater for bioethanol production using immobilised cells. Kemija u Industriji: Časopis Kemičara i Kemijskih Inženjera Hrvatske, 71(1-2), 21-28. https://doi.org/10.15255/KUI.2021.015
  • Barbera, A. C., Maucieri, C., Cavallaro, V., Ioppolo, A., & Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management, 119, 43-53. https://doi.org/10.1016/j.agwat.2012.12.009
  • Bellou, S., Makri, A., Sarris, D., Michos, K., Rentoumi, P., Celik, A., Papanikolaou, S., & Aggelis, G. (2014). The olive mill wastewater as substrate for single cell oil production by Zygomycetes. Journal of Biotechnology, 170, 50-59. https://doi.org/10.1016/j.jbiotec.2013.11.015
  • Benhoula, M., Azzouz, Z., Bettache, A., Le Roes-Hill, M., Djoudi, W., Maibeche, R., Hamma, S., Bensaad, M. S., Amghar, Z., Boudjelal, A., Benallaoua, S., & Boucherba, N. (2023). Olive mill wastewater biodegradation for bacterial lipase production using a response surface methodology. Biomass Conversion and Biorefinery, 14, 1187-1200. https://doi.org/10.1007/s13399-023-04051-w
  • Buchmann, C., Felten, A., Peikert, B., Muñoz, K., Bandow, N., Dag, A., & Schaumann, G. E. (2015). Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant and Soil, 386, 99-112. https://doi.org/10.1007/s11104-014-2241-3
  • Chatzifragkou, A., Petrou, I., Gardeli, C., Komaitis, M., & Papanikolaou, S. (2011). Effect of Origanum vulgare L. essential oil on growth and lipid profile of Yarrowia lipolytica cultivated on glycerol-based media. Journal of the American Oil Chemists’ Society, 88, 1955-1964. https://doi.org/10.1007/s11746-011-1870-4
  • Dahmen‐Ben Moussa, I., Maalej, A., Masmoudi, M. A., Feki, F., Choura, S., Baccar, N., Jelail, L., Karray, F., Chamkha, M., & Sayadi, S. (2021). Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. Journal of the Science of Food and Agriculture, 101(13), 5508-5519. https://doi.org/10.1002/jsfa.11200
  • Diamantis, I., Melanouri, E. M., Dedousi, M., Panagopoulou, I., Papanikolaou, S., Stoforos, N. G., & Diamantopoulou, P. (2022). Sustainable and eco-friendly conversions of olive mill wastewater-based media by Pleurotus pulmonarius cultures. Fermentation, 8(3), 129. https://doi.org/10.3390/fermentation8030129
  • Dias, B., Lopes, M., Ramôa, R., Pereira, A. S., & Belo, I. (2021). Candida tropicalis as a promising oleaginous yeast for olive mill wastewater bioconversion. Energies, 14(3), 640. https://doi.org/10.3390/en14030640
  • Dourou, M., Kancelista, A., Juszczyk, P., Sarris, D., Bellou, S., Triantaphyllidou, I. E., Rywińska, A., Papanikolaou, S., & Aggelis, G. (2016). Bioconversion of olive mill wastewater into high-added value products. Journal of Cleaner Production, 139, 957-969. https://doi.org/10.1016/j.jclepro.2016.08.133
  • El-Fadaly, H. A., El-Naggar, N. E., & Marwan, E. M. (2009). Single cell oil production by an oleaginous yeast strain in a low-cost cultivation medium. Research Journal of Microbiology, 4(8), 301-313. https://doi.org/10.3923/jm.2009.301.313
  • Enshaeieh, M., Nahvi, I., & Madani, M. (2014). Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. International Journal of Environmental Science and Technology, 11, 1691-1698. https://doi.org/10.1007/s13762-013-0373-2
  • Fabiszewska, A., Misiukiewicz-Stępień, P., Paplińska-Goryca, M., Zieniuk, B., & Białecka-Florjańczyk, E. (2019). An insight into storage lipid synthesis by Yarrowia lipolytica yeast relating to lipid and sugar substrates metabolism. Biomolecules, 9(11), 685. https://doi.org/10.3390/biom9110685
  • Fattoum, H., Cherif, A. O., Trabelsi, S., & Messaouda, M. B. (2023). Identification of phenolic compounds extracted from OMW Using LC-MS. Journal of Oleo Science, 72(12), 1113-1123. https://doi.org/10.5650/jos.ess23109
  • Filippousi, R., Diamantopoulou, P., Stavropoulou, M., Makris, D. P., & Papanikolaou, S. (2022). Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochemistry, 123, 52-62. https://doi.org/10.1016/j.procbio.2022.10.008
  • Flouri, F., Sotirchos, D., Ioannidou, S., & Balis, C. (1996). Decolorization of olive oil mill liquid wastes by chemical and biological means. International Biodeterioration & Biodegradation, 38(3-4), 189-192. https://doi.org/10.1016/S0964-8305(96)00050-9
  • Hamimed, S., Landoulsi, A., & Chatti, A. (2021). The bright side of olive mill wastewater: Valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology, 18, 4053-4074. https://doi.org/10.1007/s13762-021-03145-0
  • He, M., Li, L., Zhou, W., Huang, H., Ma, Q., & Gong, Z. (2025). Non-sterile fermentation for enhanced lipid production by Cutaneotrichosporon oleaginosum using bifunctional benzamide as selective antibacterial agent and unique nitrogen source. Bioresource Technology, 418, 131926. https://doi.org/10.1016/j.biortech.2024.131926
  • Herrero, O. M., Villalba, M. S., Lanfranconi, M. P., & Alvarez, H. M. (2018). Rhodococcus bacteria as a promising source of oils from olive mill wastes. World Journal of Microbiology and Biotechnology, 34, 114. https://doi.org/10.1007/s11274-018-2499-3
  • Huang, C., Chen, X. F., Xiong, L., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129-139. https://doi.org/10.1016/j.biotechadv.2012.08.010
  • ISO 1841-1. (1996). Meat and meat products-determination of chloride content-part 1: Volhard method. https://standards.iteh.ai/catalog/standards/iso/f7a5c841-dbb3-46c1-a30d-bfab93312a26/iso-1841-1-1996
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671. https://doi.org/10.3390/pr8060671
  • Kuttiraja, M., Douha, A., Valéro, J. R., & Tyagi, R. D. (2016). Elucidating the effect of glycerol concentration and C/N ratio on lipid production using Yarrowia lipolytica SKY7. Applied Biochemistry and Biotechnology, 180, 1586-1600. https://doi.org/10.1007/s12010-016-2189-2
  • Moustogianni, A., Bellou, S., Triantaphyllidou, I. E., & Aggelis, G. (2014). Feasibility of raw glycerol conversion into single cell oil by Zygomycetes under non‐aseptic conditions. Biotechnology and Bioengineering, 112(4), 827-831. https://doi.org/10.1002/bit.25482
  • Ochando-Pulido, J. M., Pimentel-Moral, S., Verardo, V., & Martinez-Ferez, A. (2017). A focus on advanced physico-chemical processes for olive mill wastewater treatment. Separation and Purification Technology, 179, 161-174. http://doi.org/10.1016/j.seppur.2017.02.004
  • Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., & Syldatk, C. (2016). Production strategies and applications of microbial single cell oils. Frontiers in Microbiology, 7, 1539. https://doi.org/10.3389/fmicb.2016.01539
  • Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2008). Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technology, 99(7), 2419-2428. https://doi.org/10.1016/j.biortech.2007.05.005
  • Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: A review. Journal of Chemical Technology & Biotechnology, 81(9), 1475-1485. https://doi.org/10.1002/jctb.1553
  • Paredes, C., Cegarra, J., Roig, A., Sánchez-Monedero, M. A., & Bernal, M. P. (1999). Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresource Technology, 67(2), 111-115. https://doi.org/10.1016/S0960-8524(98)00106-0
  • Polburee, P., & Limtong, S. (2020). Economical lipid production from crude glycerol using Rhodosporidiobolus fluvialis DMKU-RK253 in a two-stage cultivation under non-sterile conditions. Biomass and Bioenergy, 138, 105597. https://doi.org/10.1016/j.biombioe.2020.105597
  • Qwele, K., Hugo, A., Oyedemi, S. O., Moyo, B., Masika, P. J., & Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science, 93(3), 455-462. http://doi.org/10.1016/j.meatsci.2012.11.009
  • Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960-969. https://doi.org/10.1016/j.wasman.2005.07.024
  • Roila, R., Primavilla, S., Ranucci, D., Galarini, R., Paoletti, F., Altissimi, C., Valiani, A., & Branciari, R. (2024). The effects of encapsulation on the in vitro anti-clostridial activity of olive mill wastewater polyphenolic extracts: A promising strategy to limit microbial growth in food systems. Molecules, 29(7), 1441. https://doi.org/10.3390/molecules29071441
  • Sarris, D., Galiotou‐Panayotou, M., Koutinas, A. A., Komaitis, M., & Papanikolaou, S. (2011). Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater‐based media. Journal of Chemical Technology and Biotechnology, 86(11), 1439-1448. https://doi.org/10.1002/jctb.2658
  • Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A. A., & Papanikolaou, S. (2013). Conversions of olive mill wastewater‐based media by Saccharomyces cerevisiae through sterile and non‐sterile bioprocesses. Journal of Chemical Technology and Biotechnology, 88(5), 958-969. https://doi.org/10.1002/jctb.3931
  • Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A. A., & Papanikolaou, S. (2014). Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 56, 83-93. https://doi.org/10.1016/j.indcrop.2014.02.040
  • Sarris, D., Stoforos, N. G., Mallouchos, A., Kookos, I. K., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Production of added‐value metabolites by Yarrowia lipolytica growing in olive mill wastewater‐based media under aseptic and non‐aseptic conditions. Engineering in Life Sciences, 17, 695-709. https://doi.org/10.1002/elsc.201600225
  • Sarris, D., Rapti, A., Papafotis, N., Koutinas, A. A., & Papanikolaou, S. (2019). Production of added-value chemical compounds through bioconversions of olive-mill wastewaters blended with crude glycerol by a Yarrowia lipolytica strain. Molecules, 24(2), 222. https://doi.org/10.3390/molecules24020222
  • Sarris, D., Tsouko, E., Photiades, A., Tchakouteu, S. S., Diamantopoulou, P., & Papanikolaou, S. (2023a). Growth response of non-conventional yeasts on sugar-rich media: Part 2: Citric acid production and circular-oriented valorization of glucose-enriched olive mill wastewaters using novel Yarrowia lipolytica strains. Microorganisms, 11(9), 2243. https://doi.org/10.3390/microorganisms11092243
  • Sarris, D., Tsouko, E., Kothri, M., Anagnostou, M., Karageorgiou, E., & Papanikolaou, S. (2023b). Upgrading major waste streams derived from the biodiesel industry and olive mills via microbial bioprocessing with non-conventional Yarrowia lipolytica strains. Fermentation, 9(3), 251. https://doi.org/10.3390/fermentation9030251
  • Singh, S., Bharadwaj, T., Verma, D., & Dutta, K. (2022). Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564T. Chemosphere, 308(Part 2), 136269. https://doi.org/10.1016/j.chemosphere.2022.136269
  • Sipiczki, G., Micevic, S. S., Kohari-Farkas, C., Nagy, E. S., Nguyen, Q. D., Gere, A., & Bujna, E. (2024). Effects of olive oil and Tween 80 on production of lipase by Yarrowia yeast strains. Processes, 12(6), 1206. https://doi.org/10.3390/pr12061206
  • Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S., & Hayashi, M. (2011). Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. Journal of Bioscience and Bioengineering, 111(4), 420-424. https://doi.org/10.1016/j.jbiosc.2010.12.010
  • Tzirita, M., Kremmyda, M., Sarris, D., Koutinas, A. A., & Papanikolaou, S. (2019). Effect of salt addition upon the production of metabolic compounds by Yarrowia lipolytica cultivated on biodiesel-derived glycerol diluted with olive-mill wastewaters. Energies, 12(19), 3649. https://doi.org/10.3390/en12193649
  • Yu, X., Dong, T., Zheng, Y., Miao, C., & Chen, S. (2015). Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction. European Journal of Lipid Science and Technology, 117(5), 730-737. https://doi.org/10.1002/ejlt.201400195
  • Zhang, S., Jagtap, S. S., Deewan, A., & Rao, C. V. (2019). pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. Journal of Biotechnology, 290, 10-15. https://doi.org/10.1016/j.jbiotec.2018.10.012
There are 50 citations in total.

Details

Primary Language English
Subjects Enzyme and Microbial Biotechnology in Agriculture
Journal Section Research Articles
Authors

Bilge Sayın 0000-0002-1898-0428

Zerrin Polat 0000-0002-0046-4839

Güzin Kaban 0000-0001-6720-7231

Publication Date March 26, 2025
Submission Date October 29, 2024
Acceptance Date February 10, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Sayın, B., Polat, Z., & Kaban, G. (2025). Enhanced Lipid Yield from Olive-Mill Wastewater by Yarrowia lipolytica NRRL YB-423. Journal of Agricultural Production, 6(1), 32-40. https://doi.org/10.56430/japro.1574738