Today, as the companies grow, the number of personnel working within the company and the number of supplier companies that the company works with are also increasing. In parallel with this increase, the amount of expenditure made on behalf of the company increases, and more invoices are created. Since the invoices must be kept for legal reasons, physical invoices are transferred to the digital environment. Since large companies have large numbers of invoices, labor demand is higher in digitalizing invoices. In addition, as the number of invoices to be transferred to digital media increases, the number of possible errors during entry becomes more. This paper aims to automate the transfer of invoices to the digital environment. In this study, invoices belonging to four different templates were used. Invoice images taken from a bank system were used for the first time in this study, and the original invoice dataset was prepared. Furthermore, two more datasets were obtained by applying preprocessing methods (Zero-Padding, Brightness Augmentation) on the original dataset. The Invoice classification system developed using Convolutional Neural Networks (CNN) architectures named LeNet-5, VGG-19, and MobileNetV2 was trained on three different data sets. Data preprocessing techniques such as correcting the curvature and aspect ratio of the invoices and image augmentation with variable brightness ratio were applied to create the data sets. The datasets created with preprocessing techniques have increased the classification success of the proposed models. With this proposed model, invoice images were automatically classified according to their templates using CNN architectures. In experimental studies, a classification success rate of 99.83% was achieved in training performed on the data set produced by the data augmentation method.
Convolutional Neural Networks Deep Learning Image Classification Invoice
Birincil Dil | İngilizce |
---|---|
Konular | Yapay Zeka |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 10 Mart 2022 |
Yayımlanma Tarihi | 10 Mart 2022 |
Gönderilme Tarihi | 17 Haziran 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 8 Sayı: 1 |
As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).