Research Article
BibTex RIS Cite

New Memory Type Estimators for Systematic Sampling

Year 2025, Volume: 11 Issue: 3, 224 - 236, 30.09.2025

Abstract

This study aims to enhance estimation accuracy in systematic sampling by proposing a set of novel Exponentially Weighted Moving Average (EWMA)-based memory-type estimators. While memory-type estimators have been explored in other sampling frameworks, they have not yet been adapted to systematic sampling, which is known for its uniform population coverage and greater efficiency compared to simple random sampling. To address this gap, we develop three new estimators: An EWMA-based ratio estimator, an exponential ratio estimator, and a regression estimator. Through comprehensive simulation studies using both synthetic and real-world datasets, we demonstrate that the proposed estimators consistently outperform traditional methods in terms of efficiency. Notably, the ratio and regression-type estimators exhibit superior performance in different distributional settings, particularly when the weight parameter ϑ is set to 0.3 for symmetric distributions. These results offer a practical and robust alternative for survey statisticians and practitioners working with structured populations. The proposed methodology contributes both theoretically and empirically to the field of finite population estimation under complex designs.

Ethical Statement

No approval from the Board of Ethics is required.

Project Number

-

References

  • W. G. Madow, L. H. Madow, On the theory of systematic sampling I, Annals of Mathematical Statistics 15(1) (1944) 1–24.
  • W.G. Cochran, Sampling Techniques, 3rd Edition, Wiley, 1977.
  • S. K. Pal, S. A. Mahmud, H. P. Singh, An efficient estimation of finite population mean through difference estimator in systematic sampling, Afrika Matematika 36 (1) (2025) 1–20.
  • A. A. Bello, A. Audu, A. B. Zoromawa, M. M. Hamza, Imputation methods for missing values in estimation of population mean under diagonal systematic sampling scheme, Asian Journal of Probability and Statistics 26 (11) (2024) 110–123.
  • U. Shahzad, I. Ahmad, N. H. Al-Noor, M. Hanif, I. M. Almanjahie, Robust estimation of the population mean using quantile regression under systematic sampling, Mathematical Population Studies 30 (3) (2023) 195–207.
  • M. Azeem, S. Hussain, M. Ijaz, N. Salahuddin, A. Salam, An improved version of systematic sampling design for use with linear trend data, Heliyon 9 (6) (2023) e17121.
  • K. K. Pandey, D. Shukla, Stratified linear systematic sampling based clustering approach for detection of financial risk group by mining of big data, International Journal of System Assurance Engineering and Management 13 (3) (2022) 1239–1253.
  • M. Azeem, A modified version of diagonal systematic sampling in the presence of linear trend, Plos One, 17 (3) (2022) e0265179.
  • M. Azeem, On estimation of population proportion in diagonal systematic sampling, Life Cycle Reliability and Safety Engineering 10 (3) (2021) 249–254.
  • A. Mukherjee, A. Singh, Optimal systematic sampling when sample size is odd in the presence of linear trend and two-way linear trend, Sankhya A 83 (2021) 128–142.
  • J. Shabbir, S. Masood, S. Gupta, A new improved difference-cum-exponential ratio type estimator in systematic sampling two auxiliary variables, Journal of the National Science Foundation of Sri Lanka 48 (1) (2020).
  • Z. Khan, J. Shabbir, S. Gupta, A. Shamim, An optimal systematic sampling scheme, Journal of Statistical Computation and Simulation 90 (11) (2020) 2023–2036.
  • S. Gupta, Z. Khan, J. Shabbir, Modified systematic sampling with multiple random starts, REVSTAT-Statistical Journal 16 (2) (2018) 187–212.
  • J. H. Lee, I. H. Ji, S. H. Jeon, J. T. Seo, Generating ICS anomaly data reflecting cyber-attack based on systematic sampling and linear regression, Sensors 23 (24) (2023) 9855.
  • S. Ansari, A. Ayob, M. H. Lipu, A. Hussain, M. H. M. Saad, Particle swarm optimized data driven model for remaining useful life prediction of lithium-ion batteries by systematic sampling, Journal of Energy Storage 56 (2022) 106050.
  • E. G. Koçyiğit, Using past sample means in exponential ratio and regression type estimators under a simple random sampling, Soft Computing 29 (2025) 1389–1406.
  • S. Bhushan, A. Kumar, A. Alrumayh, H. A. Khogeer, R. Onyango, Evaluating the performance of memory type logarithmic estimators using simple random sampling, PloS One 17 (12) (2022) e0278264.
  • I. Aslam, M. Noor-ul-Amin, U. Yasmeen, M. Hanif, Memory type ratio and product estimators in stratified sampling, Journal of Reliability and Statistical Studies 13 (1) (2020) 1–20.
  • M. U. Tariq, M. N. Qureshi, O. A. Alamri, S. Iftikhar, B. S. Alsaedi, M. Hanif, Variance estimation using memory type estimators based on EWMA statistic for time scaled surveys in stratified sampling, Scientific Reports 14 (1) (2024) 26700.
  • S. K. Yadav, G. K. Vishwakarma, R. Varshney, A. Pal, Improved memory type product estimator for population mean in stratified random sampling under linear cost function, SN Computer Science 4 (3) (2023) 235.
  • N. Shahzad, A. Zaidi, S. Zia, Memory type estimator of population mean using exponentially weighted moving averages in two-phase sampling, Journal of Positive School Psychology 6 (10) (2022) 1176–1192.
  • I. Aslam, M. Noor-ul-Amin, M. Hanif, P. Sharma, Memory type ratio and product estimators under ranked-based sampling schemes, Communications in Statistics-Theory and Methods 52 (4) (2023) 1155–1177.
  • S. L. Lohr, Sampling: Design and Analysis, 2nd Edition, Chapman and Hall/CRC, 2010.
  • A. K. P. C. Swain, The use of systematic sampling in ratio estimate, Journal of the Indian Statistical Association 2 (213) (1964) 160–164.
  • H. P. Singh, R. Tailor, N. K. Jatwa, Modified ratio and product estimators for population mean in systematic sampling, Journal of Modern Applied Statistical Methods 10(2) (2011) 4.
  • TÜİK-Turkish Statistical Institute, Motor vehicle statistics. https://biruni.tuik.gov.tr/medas/, Accessed 8 Apr 2025.
There are 26 citations in total.

Details

Primary Language English
Subjects Theory of Sampling
Journal Section Research Article
Authors

Eda Gizem Koçyiğit 0000-0002-0774-1376

Project Number -
Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date April 8, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Koçyiğit, E. G. (2025). New Memory Type Estimators for Systematic Sampling. Journal of Advanced Research in Natural and Applied Sciences, 11(3), 224-236.
AMA Koçyiğit EG. New Memory Type Estimators for Systematic Sampling. JARNAS. September 2025;11(3):224-236.
Chicago Koçyiğit, Eda Gizem. “New Memory Type Estimators for Systematic Sampling”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 3 (September 2025): 224-36.
EndNote Koçyiğit EG (September 1, 2025) New Memory Type Estimators for Systematic Sampling. Journal of Advanced Research in Natural and Applied Sciences 11 3 224–236.
IEEE E. G. Koçyiğit, “New Memory Type Estimators for Systematic Sampling”, JARNAS, vol. 11, no. 3, pp. 224–236, 2025.
ISNAD Koçyiğit, Eda Gizem. “New Memory Type Estimators for Systematic Sampling”. Journal of Advanced Research in Natural and Applied Sciences 11/3 (September2025), 224-236.
JAMA Koçyiğit EG. New Memory Type Estimators for Systematic Sampling. JARNAS. 2025;11:224–236.
MLA Koçyiğit, Eda Gizem. “New Memory Type Estimators for Systematic Sampling”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 3, 2025, pp. 224-36.
Vancouver Koçyiğit EG. New Memory Type Estimators for Systematic Sampling. JARNAS. 2025;11(3):224-36.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).