Derleme
BibTex RIS Kaynak Göster

Mikro Yerçekimi Koşullarında Astronotlarda Kırık Tedavisi İçin Stabilizasyon Cihazları ve Ortopedik Kalıpların Geliştirilmesi

Yıl 2025, Cilt: 3 Sayı: 2, 167 - 194, 30.12.2025

Öz

Mikro yerçekimi koşullarında astronotlarda kemik mineral yoğunluğu kaybının neden olduğu uzuv kırıkları, kas-iskelet sistemi adaptasyon sorunları ve biyomekanik yüklenmelerde farklılıklar meydana gelmektedir. Uzay ortamında kırık tedavisi, uzay görevlerinde insan sağlığının sürdürülebilirliği açısından temel bir araştırma alanı olarak öne çıkmaktadır. Ancak Dünya üzerinde standart hale gelmiş ortopedik uygulamalar doğrudan uygulanabilir olmamaktadır. Bu bağlamda, astronotlarda kırıkların etkin şekilde tedavi edilebilmesi için stabilizasyon cihazları ve ortopedik kalıpların yeniden tasarımı ve geliştirilmesi kaçınılmaz bir gerekliliktir.
Son yıllarda 3D baskı temelli üretim yöntemleri, biyouyumlu polimerler, hafif kompozit malzemeler ve akıllı sensör tabanlı izleme sistemleri, mikro yerçekimi ortamına uyarlanabilecek yeni nesil ortopedik çözümler için ön plana çıkmaktadır. Bu teknolojiler, yalnızca uzay görevlerinde travmatik yaralanmaların yönetimini kolaylaştırmakla kalmamakta, aynı zamanda Dünya’daki ortopedik tedavilere de yenilikçi katkılar sunmaktadır.
Genel olarak değerlendirildiğinde, mikro yerçekiminde kırık tedavisine yönelik stabilizasyon cihazları ve ortopedik kalıpların geliştirilmesi hem uzay tıbbı hem de yeryüzündeki sağlık teknolojileri için stratejik bir araştırma alanı oluşturmakta; disiplinler arası iş birliği ve ileri malzeme teknolojilerinin entegrasyonu, geleceğin uzay görevlerinde astronot sağlığının korunmasında belirleyici rol üstlenmektedir.

Kaynakça

  • 1. Alrasheedi, N. H., Tlija, M., Elloumi, N., & Louhichi, B. (2025). A critical review of 3D printed orthoses towards workflow implementation in the clinical practice. Journal of Engineering Research, 13(2), 1038-1051.
  • 2. Androjna, C., McCabe, N. P., Cavanagh, P. R., & Midura, R. J. (2012). Effects of Spaceflight and Skeletal Unloading on Bone Fracture Healing. Clinical Reviews in Bone and Mineral Metabolism, 10(2), 61-70.
  • 3. Avitabile, E., Fusco, L., Minardi, S., Orecchioni, M., Zavan, B., Yilmazer, A., Rauner, M., Pippia, P., Tasciotti, E., & Delogu, L. G. (2020). Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Frontiers in Bioengineering and Biotechnology, 8, 722.
  • 4. Banimohamad-Shotorbani, B., Azizsoltani, A., Khalaj, Z., Rafiei-Baharloo, M., Ghotaslou, A., & Fathi-karkan, S. (2024). Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions. Microgravity Science and Technology, 36(5), 51.
  • 5. Baran, R., Wehland, M., Schulz, H., Heer, M., Infanger, M., & Grimm, D. (2022). Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. International Journal of Molecular Sciences, 23(15), 8650.
  • 6. Blaber, E. A., Dvorochkin, N., Lee, C., Alwood, J. S., Yousuf, R., Pianetta, P., Globus, R. K., Burns, B. P., & Almeida, E. A. C. (2013). Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21. PLoS ONE, 8(4), e61372.
  • 7. Bodamyali, T., Bhatt, B., Hughes, F. J., Winrow, V. R., Kanczler, J. M., Simon, B., Abbott, J., Blake, D. R., & Stevens, C. R. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochemical and Biophysical Research Communications, 250(2), 458-461.
  • 8. Bonanni, R., Cariati, I., Marini, M., Tarantino, U., & Tancredi, V. (2023). Microgravity and Musculoskeletal Health: What Strategies Should Be Used for a Great Challenge? Life, 13(7), 1423.
  • 9. Cahill, R., Blaber, E. A., Juran, C. M., Cheng-Campbell, M., Alwood, J. S., Shirazi-Fard, Y., & Almeida, E. A. C. (2025). 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites. PLOS ONE, 20(3), e0317307.
  • 10. Caliogna, L., Bina, V., Brancato, A. M., Gastaldi, G., Annunziata, S., Mosconi, M., Grassi, F. A., Benazzo, F., & Pasta, G. (2022). The Role of PEMFs on Bone Healing: An In Vitro Study. International Journal of Molecular Sciences, 23(22), 14298.
  • 11. Case Study: Manufacturing Client Orthopedic Surgery Devices. (t.y.). Geliş tarihi 25 Aralık 2025, gönderen https://www.crescentind.com/case-study-manufacturing-client-orthopedic-surgery-devices
  • 12. Catalano, A., Loddo, S., Bellone, F., Pecora, C., Lasco, A., & Morabito, N. (2018). Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study. Bone, 116, 42-46.
  • 13. Chang, E., Chang, C., Gordon, A., Vu, E., Yang, P., & Cardenas, J. (2006, Eylül 19). Osteonexus: A Fracture Healing System for Space Exploration. Space 2006. Space 2006, San Jose, California.
  • 14. Chen, Y., Braun, B. J., Menger, M. M., Ronniger, M., Falldorf, K., Histing, T., Nussler, A. K., & Ehnert, S. (2023). Intermittent Exposure to a 16 Hz Extremely Low Frequency Pulsed Electromagnetic Field Promotes Osteogenesis In Vitro through Activating Piezo 1-Induced Ca2+ Influx in Osteoprogenitor Cells. Journal of Functional Biomaterials, 14(3), 165.
  • 15. Counteracting Bone and Muscle Loss in Microgravity—NASA. (t.y.). Geliş tarihi 25 Aralık 2025, gönderen https://www.nasa.gov/missions/station/iss-research/counteracting-bone-and-muscle-loss-in-microgravity/
  • 16. Cristofaro, F., Pani, G., Pascucci, B., Mariani, A., Balsamo, M., Donati, A., Mascetti, G., Rea, G., Rizzo, A. M., & Visai, L. (2019). The NATO project: Nanoparticle-based countermeasures for microgravity-induced osteoporosis. Scientific Reports, 9(1), 17141.
  • 17. Dadwal, U. C., Maupin, K. A., Zamarioli, A., Tucker, A., Harris, J. S., Fischer, J. P., Rytlewski, J. D., Scofield, D. C., Wininger, A. E., Bhatti, F. U. R., Alvarez, M., Childress, P. J., Chakraborty, N., Gautam, A., Hammamieh, R., & Kacena, M. A. (2019). The effects of spaceflight and fracture healing on distant skeletal sites. Scientific Reports, 9(1), 11419.
  • 18. D’Amado, M. P., Albuquerque, J. B. D., Bezold, W., Crist, B. D., & Cook, J. L. (2024). Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures. Annals of 3D Printed Medicine, 14, 100146.
  • 19. Davis, S. A., & Davis, B. L. (2012). Exercise Equipment Used in Microgravity: Challenges and Opportunities. Current Sports Medicine Reports, 11(3), 142-147.
  • 20. Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Lottestrasse 55a, 22529 Hamburg, Germany, Von Kroge, S., Wölfel, E., Buravkova, L., Atiakshin, D., Markina, E., Schinke, T., Rolvien, T., Busse, B., & Jähn-Rickert, K. (2021). Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics. European Cells and Materials, 42, 220-231.
  • 21. Durnova, G. N., Burkovskaia, T. E., Vorotnikova, E. V., Kaplanskiĭ, A. S., & Arustamov, O. V. (1991). [The effect of weightlessness on fracture healing of rats flown on the biosatellite Cosmos-2044]. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina, 25(5), 29-33.
  • 22. Ehnert, S., Fentz, A.-K., Schreiner, A., Birk, J., Wilbrand, B., Ziegler, P., Reumann, M. K., Wang, H., Falldorf, K., & Nussler, A. K. (2017). Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2. Scientific Reports, 7(1), 14544.
  • 23. Fan, C., Wu, Z., Cooper, D. M. L., Magnus, A., Harrison, K., Eames, B. F., Chibbar, R., Groot, G., Huang, J., Genth, H., Zhang, J., Tan, X., Deng, Y., & Xiang, J. (2022). Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. International Journal of Molecular Sciences, 23(10), 5593.
  • 24. Ferroni, L., Gardin, C., Dolkart, O., Salai, M., Barak, S., Piattelli, A., Amir-Barak, H., & Zavan, B. (2018). Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: An in-vitro study. Scientific Reports, 8(1), 5108.
  • 25. Frost, E. (2021). Microgravity surgical workstation design. Journal of Space Safety Engineering, 8(3), 193-201.
  • 26. Fu, J., Goldsmith, M., Crooks, S. D., Condon, S. F., Morris, M., & Komarova, S. V. (2021). Bone health in spacefaring rodents and primates: Systematic review and meta-analysis. Npj Microgravity, 7(1), 19.
  • 27. Gu, R., Liu, H., Hu, M., Zhu, Y., Liu, X., Wang, F., Wu, L., Song, D., & Liu, Y. (2023). D-Mannose prevents bone loss under weightlessness. Journal of Translational Medicine, 21(1), 8.
  • 28. Hashem, A., & Shahidi Bonjar, A. H. (2012). Modulating Earth Gravitational Force for Astronauts in Microgravity Environment to Reduce Space Side Effects on Their Health.
  • 29. He, W., Qin, R., Gao, Y., Zhou, J., Wei, J., Liu, J., Hou, X., Ma, H., Xian, C. J., Li, X., & Chen, K. (2022). The interdependent relationship between the nitric oxide signaling pathway and primary cilia in pulse electromagnetic field‐stimulated osteoblastic differentiation. The FASEB Journal, 36(6), e22376.
  • 30. Huang, J., Li, Y., Zhu, S., Wang, L., Pei, H., Wang, X., Bao, T., Jiang, Z., Yang, L., & He, C. (2023). Pulsed Electromagnetic Field Promotes Bone Anabolism in Postmenopausal Osteoporosis through the miR-6976/BMP/Smad4 Axis. Journal of Tissue Engineering and Regenerative Medicine, 2023, 1-13.
  • 31. Jacquet, C., Patel, J., Khoury, P., Huang, X., & Glavas, T. (2024). Orthopedics in Space Travel: Developing Procedures to Evaluate the Safety of Implants Amidst the Rise of Commercial Space Tourism. McGill Science Undergraduate Research Journal, 19(1), 7-12.
  • 32. Jing, D., Zhai, M., Tong, S., Xu, F., Cai, J., Shen, G., Wu, Y., Li, X., Xie, K., Liu, J., Xu, Q., & Luo, E. (2016). Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Scientific Reports, 6(1), 32045.
  • 33. Johnson, W. B., Young, A., Goldman, S., Wilson, J., Alderete, J. F., & Childers, W. L. (2023). Exoskeletal solutions to enable mobility with a lower leg fracture in austere environments. Wearable Technologies, 4, e5.
  • 34. Juhl, O. J., Buettmann, E. G., Friedman, M. A., DeNapoli, R. C., Hoppock, G. A., & Donahue, H. J. (2021). Update on the effects of microgravity on the musculoskeletal system. Npj Microgravity, 7(1), 28.
  • 35. Kaadan, A., Salati, S., Setti, S., & Aaron, R. (2024). Augmentation of Deficient Bone Healing by Pulsed Electromagnetic Fields—From Mechanisms to Clinical Outcomes. Bioengineering, 11(12), 1223.
  • 36. Khan, S. U. E., Varghese, R. J., Kassanos, P., Farina, D., & Burdet, E. (2024). Space Physiology and Technology: Musculoskeletal Adaptations, Countermeasures, and the Opportunity for Wearable Robotics (No. arXiv:2404.03363; Versiyon 1). arXiv.
  • 37. LeBlanc, A., Rowe, R., Evans, H., West, S., Shackelford, L., & Schneider, V. (1997). Muscle Atrophy During Long Duration Bed Rest. International Journal of Sports Medicine, 18(S 4), S283-S285.
  • 38. Lee Satcher, R., Fiedler, B., Ghali, A., & Dirschl, D. R. (2024). Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review. Journal of the American Academy of Orthopaedic Surgeons, 32(12), 535-541.
  • 39. Lewandowski, B. E., Schkurko, C. M., Miller, R. S., Valentine, R. W., Calaway, K. M., Yang, J. D., Ebert, D. J., Sargsyan, A., Byrne, V., Walton, M., Lemery, J., Suresh, R., Thompson, M. S., Easter, B. D., & Lehnhardt, K. R. (2024). Technology modification, development, and demonstrations for future spaceflight medical systems at NASA. Frontiers in Space Technologies, 5, 1384457.
  • 40. Li, W., Li, X., Tian, Y., Chen, X., Zhou, J., Zhu, B., Xi, H., Gao, Y., Xian, C. J., & Chen, K. (2018). Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb‐suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway. Bioelectromagnetics, 39(8), 569-584.
  • 41. Liu, Y., Cao, X., Zhou, Q., Deng, C., Yang, Y., Huang, D., Luo, H., Zhang, S., Li, Y., Xu, J., & Chen, H. (2024). Mechanisms and Countermeasures for Muscle Atrophy in Microgravity. Cells, 13(24), 2120.
  • 42. Lutz, K., Trevino, T., & C., A. (2022, Ekim 24). Modeling Effects of Electromagnetic Fields on Bone Density on Humans in Microgravity. ASCEND 2022. ASCEND 2022, Las Vegas, Nevada & Online.
  • 43. MacFadden, L. N., Adams, L. W., Boerhave, C., O’Connor, H. A., VanDerWolde, B. K., & Skelley, N. W. (2024). Mechanical Analysis of a Novel 3D-printed External Fixator Design Versus Industry-standard External Fixators. The Journal of the American Academy of Orthopaedic Surgeons, 32(7), e331-e345.
  • 44. Man, J., Graham, T., Squires-Donelly, G., & Laslett, A. L. (2022). The effects of microgravity on bone structure and function. Npj Microgravity, 8(1), 9.
  • 45. Manna, O. M., Burgio, S., Picone, D., Carista, A., Pitruzzella, A., Fucarino, A., & Bucchieri, F. (2024). Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. Biology, 13(11), 921.
  • 46. Manon, J., Saint-Guillain, M., Pletser, V., Buckland, D. M., Vico, L., Dobney, W., Baatout, S., Wain, C., Jacobs, J., Comein, A., Drouet, S., Meert, J., Casla, I. S., Chamart, C., Vanderdonckt, J., Cartiaux, O., & Cornu, O. (2023). Adequacy of in-mission training to treat tibial shaft fractures in mars analogue testing. Scientific Reports, 13(1), 18072.
  • 47. Martini, F., Pellati, A., Mazzoni, E., Salati, S., Caruso, G., Contartese, D., & De Mattei, M. (2020). Bone Morphogenetic Protein-2 Signaling in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Induced by Pulsed Electromagnetic Fields. International Journal of Molecular Sciences, 21(6), 2104.
  • 48. Matheson, B. E., Walle, M., Liphardt, A.-M., Hulme, P. A., Heer, M., Zwart, S. R., Sibonga, J. D., Smith, S. M., Gabel, L., & Boyd, S. K. (2025). Recovery of bone microarchitecture and density four years after spaceflight: Two case studies. Npj Microgravity, 11(1), 47.
  • 49. Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., & Li, Z. (2023). 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Journal of Orthopaedic Translation, 42, 94-112.
  • 50. M.K., C., & S.R., S. (2025). Human thermoregulation in microgravity environments: Insights from a computational model. Life Sciences in Space Research, 46, 18-38.
  • 51. Mochi, F., Scatena, E., Rodriguez, D., Ginebra, M.-P., & Del Gaudio, C. (2022). Scaffold-based bone tissue engineering in microgravity: Potential, concerns and implications. Npj Microgravity, 8(1), 45.
  • 52. Muir, J., Xia, Y., Holguin, N., Judex, S., Qin, Y.-X., Jeka, J., Evans, H., Lang, T., & Rubin, C. (2007). Retention of bone density and postural status with a non-invasive extremely low level mechanical signal: A ground based evaluation of efficacy. 2007 IEEE 33rd Annual Northeast Bioengineering Conference, 1-2.
  • 53. Orwoll, E. S., Adler, R. A., Amin, S., Binkley, N., Lewiecki, E. M., Petak, S. M., Shapses, S. A., Sinaki, M., Watts, N. B., & Sibonga, J. D. (2013). Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA bone summit. Journal of Bone and Mineral Research, 28(6), 1243-1255.
  • 54. Perspective: Leveraging Lower Body Negative Pressure for Enhanced Outcomes in Orthopedic Arthroplasty—Insights from NASA’s Bone Health Research. (t.y.). CoLab. Geliş tarihi 26 Aralık 2025, gönderen https://colab.ws/articles/10.1016%2Fj.lssr.2025.04.008
  • 55. Rainey, K. (2024, Ekim 16). Accelerated Model of Age-Related Muscle Loss in Microgravity Could Lead to New Sarcopenia Treatments. ISS National Lab. https://issnationallab.org/press-releases/release-upward72-malany-sarcopenia/
  • 56. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (s. 13048). (2011). National Academies Press.
  • 57. Reynolds, R. J. (2020). Beyond LEO: Human Health Issues for Deep Space Exploration. BoD – Books on Demand.
  • 58. Risk of Bone Fracture due to Spaceflight-induced Changes to Bone—NASA. (2025, Mart 11). https://www.nasa.gov/directorates/esdmd/hhp/risk-of-bone-fracture-due-to-spaceflight-induced-changes-to-bone/
  • 59. Rivera, M. V., Vargas, M., Cornejo, J., Plascencia, P. V., Guillen, K., Maquera, E., Cornejo, J., Russomano, T., & Cinelli, I. (2024). Space Nursing for the Future Management of Astronaut Health in other Planets: A Literature Review. The Open Nursing Journal, 18(1), e18744346289848.
  • 60. Scheuring, R. A., Mathers, C. H., Jones, J. A., & Wear, M. L. (2009). Musculoskeletal Injuries and Minor Trauma in Space: Incidence and Injury Mechanisms in U.S. Astronauts. Aviation, Space, and Environmental Medicine, 80(2), 117-124.
  • 61. Seacord, C. L. (1964, Mayıs 1). Factors affecting the design of flight stabilization and control systems for manned spacecraft. https://ntrs.nasa.gov/citations/19720063754
  • 62. Selvamurugan, N., He, Z., Rifkin, D., Dabovic, B., & Partridge, N. C. (2017). Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF- β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem Cells International, 2017, 1-17.
  • 63. Sharma, S., Banga, N., Sharma, A., Rizvi, M. R., & Sharma, P. (2024). Space Travel and the Musculoskeletal System: İçinde K. L. Tennin & I. Cinelli (Ed.), Advances in Medical Diagnosis, Treatment, and Care (ss. 237-266). IGI Global.
  • 64. Sibonga, J. D., Evans, H. J., Sung, H. G., Spector, E. R., Lang, T. F., Oganov, V. S., Bakulin, A. V., Shackelford, L. C., & LeBlanc, A. D. (2007). Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone, 41(6), 973-978.
  • 65. Skelley, N. Wm. (2023). Design and Development of a Novel 3-D Printed External Fixation Device for Fracture Stabilization. 3D Printing in Medicine, 9(1), 17.
  • 66. Sonawane, R., Patil, S., Rahaman, J., & Mukherjee, D. (2025). Effect of microgravity on bone Tissue: Mechanisms of osteodegeneration and advanced treatment modalities. Biochemical and Biophysical Research Communications, 771, 152055.
  • 67. Space-Age Challenge: Healing Broken Bones, Wounds and Internal Organs. (t.y.). Geliş tarihi 26 Aralık 2025, gönderen https://www.rutgers.edu/news/space-age-challenge-healing-broken-bones-wounds-and-internal-organs
  • 68. Stavnichuk, M., Mikolajewicz, N., Corlett, T., Morris, M., & Komarova, S. V. (2020). A systematic review and meta-analysis of bone loss in space travelers. Npj Microgravity, 6(1), 13.
  • 69. Tanchain. (t.y.). The Technology Status And Research Progress Of Carbon Fiber In Aerospace. Shanghai Tanchain. Geliş tarihi 26 Aralık 2025, gönderen https://www.tchaintech.com/NDETAIL/Carbon_Fabric-Carbon_Fabrics-Carbon_Fibre_Fabric-Carbon_Fabric_Cloth
  • 70. Tatka, L. T., Smith, L. P., Hellerstein, J. L., & Sauro, H. M. (2023). Adapting Modeling and Simulation Credibility Standards to Computational Systems Biology (No. arXiv:2301.06007). arXiv.
  • 71. Touahria, I. E. (2018). Medical systems, the role of middleware and survey on middleware design (No. arXiv:1809.09885). arXiv.
  • 72. Understanding the Superior Performance of UHMWPE in Medical and Aerospace Applications. (2024, Aralık 5). https://aipprecision.com/uhmwpe/
  • 73. Varani, K., Vincenzi, F., Pasquini, S., Blo, I., Salati, S., Cadossi, M., & De Mattei, M. (2021). Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 22(2), 809.
  • 74. Wang, A., Ma, X., Bian, J., Jiao, Z., Zhu, Q., Wang, P., & Zhao, Y. (2024). Signalling pathways underlying pulsed electromagnetic fields in bone repair. Frontiers in Bioengineering and Biotechnology, 12, 1333566.
  • 75. Xie, Y.-F., Shi, W.-G., Zhou, J., Gao, Y.-H., Li, S.-F., Fang, Q.-Q., Wang, M.-G., Ma, H.-P., Wang, J.-F., Xian, C. J., & Chen, K.-M. (2016). Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone, 93, 22-32.
  • 76. Zamarioli, A., Campbell, Z. R., Maupin, K. A., Childress, P. J., Ximenez, J. P. B., Adam, G., Chakraborty, N., Gautam, A., Hammamieh, R., & Kacena, M. A. (2021). Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites. Npj Microgravity, 7(1), 12.
  • 77. Zhang, W. (2023). Mimic Spaceflight: Microgravity Induces Bone Injury. Highlights in Science, Engineering and Technology, 36, 1230-1237.

Development of Stabilization Devices and Orthopedic Casts for Fracture Treatment in Astronauts Under Microgravity Conditions

Yıl 2025, Cilt: 3 Sayı: 2, 167 - 194, 30.12.2025

Öz

Under microgravity conditions, astronauts experience bone mineral density loss, musculoskeletal adaptation issues, and altered biomechanical loading, all of which increase the risk of limb fractures. Fracture management in space has thus emerged as a critical research area for ensuring the sustainability of human health during space missions. However, conventional orthopedic treatments and immobilization techniques developed on Earth are not directly applicable in the space environment. In this context, the redesign and development of stabilization devices and orthopedic casts specifically adapted for microgravity conditions have become essential for the effective treatment of fractures in astronauts.
Recent advances in additive manufacturing, biocompatible polymers, lightweight composite materials, and smart sensor-based monitoring systems have opened new opportunities for developing next-generation orthopedic solutions suitable for space applications. These technologies not only facilitate the management of traumatic injuries during space missions but also provide innovative contributions to terrestrial orthopedic treatments.
Overall, the development of stabilization devices and orthopedic casts for fracture treatment under microgravity represents a strategic research area for both space medicine and Earth-based healthcare technologies. The integration of interdisciplinary collaboration and advanced material technologies plays a crucial role in maintaining astronaut health in future long-duration space missions.

Kaynakça

  • 1. Alrasheedi, N. H., Tlija, M., Elloumi, N., & Louhichi, B. (2025). A critical review of 3D printed orthoses towards workflow implementation in the clinical practice. Journal of Engineering Research, 13(2), 1038-1051.
  • 2. Androjna, C., McCabe, N. P., Cavanagh, P. R., & Midura, R. J. (2012). Effects of Spaceflight and Skeletal Unloading on Bone Fracture Healing. Clinical Reviews in Bone and Mineral Metabolism, 10(2), 61-70.
  • 3. Avitabile, E., Fusco, L., Minardi, S., Orecchioni, M., Zavan, B., Yilmazer, A., Rauner, M., Pippia, P., Tasciotti, E., & Delogu, L. G. (2020). Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Frontiers in Bioengineering and Biotechnology, 8, 722.
  • 4. Banimohamad-Shotorbani, B., Azizsoltani, A., Khalaj, Z., Rafiei-Baharloo, M., Ghotaslou, A., & Fathi-karkan, S. (2024). Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions. Microgravity Science and Technology, 36(5), 51.
  • 5. Baran, R., Wehland, M., Schulz, H., Heer, M., Infanger, M., & Grimm, D. (2022). Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. International Journal of Molecular Sciences, 23(15), 8650.
  • 6. Blaber, E. A., Dvorochkin, N., Lee, C., Alwood, J. S., Yousuf, R., Pianetta, P., Globus, R. K., Burns, B. P., & Almeida, E. A. C. (2013). Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21. PLoS ONE, 8(4), e61372.
  • 7. Bodamyali, T., Bhatt, B., Hughes, F. J., Winrow, V. R., Kanczler, J. M., Simon, B., Abbott, J., Blake, D. R., & Stevens, C. R. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochemical and Biophysical Research Communications, 250(2), 458-461.
  • 8. Bonanni, R., Cariati, I., Marini, M., Tarantino, U., & Tancredi, V. (2023). Microgravity and Musculoskeletal Health: What Strategies Should Be Used for a Great Challenge? Life, 13(7), 1423.
  • 9. Cahill, R., Blaber, E. A., Juran, C. M., Cheng-Campbell, M., Alwood, J. S., Shirazi-Fard, Y., & Almeida, E. A. C. (2025). 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites. PLOS ONE, 20(3), e0317307.
  • 10. Caliogna, L., Bina, V., Brancato, A. M., Gastaldi, G., Annunziata, S., Mosconi, M., Grassi, F. A., Benazzo, F., & Pasta, G. (2022). The Role of PEMFs on Bone Healing: An In Vitro Study. International Journal of Molecular Sciences, 23(22), 14298.
  • 11. Case Study: Manufacturing Client Orthopedic Surgery Devices. (t.y.). Geliş tarihi 25 Aralık 2025, gönderen https://www.crescentind.com/case-study-manufacturing-client-orthopedic-surgery-devices
  • 12. Catalano, A., Loddo, S., Bellone, F., Pecora, C., Lasco, A., & Morabito, N. (2018). Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study. Bone, 116, 42-46.
  • 13. Chang, E., Chang, C., Gordon, A., Vu, E., Yang, P., & Cardenas, J. (2006, Eylül 19). Osteonexus: A Fracture Healing System for Space Exploration. Space 2006. Space 2006, San Jose, California.
  • 14. Chen, Y., Braun, B. J., Menger, M. M., Ronniger, M., Falldorf, K., Histing, T., Nussler, A. K., & Ehnert, S. (2023). Intermittent Exposure to a 16 Hz Extremely Low Frequency Pulsed Electromagnetic Field Promotes Osteogenesis In Vitro through Activating Piezo 1-Induced Ca2+ Influx in Osteoprogenitor Cells. Journal of Functional Biomaterials, 14(3), 165.
  • 15. Counteracting Bone and Muscle Loss in Microgravity—NASA. (t.y.). Geliş tarihi 25 Aralık 2025, gönderen https://www.nasa.gov/missions/station/iss-research/counteracting-bone-and-muscle-loss-in-microgravity/
  • 16. Cristofaro, F., Pani, G., Pascucci, B., Mariani, A., Balsamo, M., Donati, A., Mascetti, G., Rea, G., Rizzo, A. M., & Visai, L. (2019). The NATO project: Nanoparticle-based countermeasures for microgravity-induced osteoporosis. Scientific Reports, 9(1), 17141.
  • 17. Dadwal, U. C., Maupin, K. A., Zamarioli, A., Tucker, A., Harris, J. S., Fischer, J. P., Rytlewski, J. D., Scofield, D. C., Wininger, A. E., Bhatti, F. U. R., Alvarez, M., Childress, P. J., Chakraborty, N., Gautam, A., Hammamieh, R., & Kacena, M. A. (2019). The effects of spaceflight and fracture healing on distant skeletal sites. Scientific Reports, 9(1), 11419.
  • 18. D’Amado, M. P., Albuquerque, J. B. D., Bezold, W., Crist, B. D., & Cook, J. L. (2024). Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures. Annals of 3D Printed Medicine, 14, 100146.
  • 19. Davis, S. A., & Davis, B. L. (2012). Exercise Equipment Used in Microgravity: Challenges and Opportunities. Current Sports Medicine Reports, 11(3), 142-147.
  • 20. Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Lottestrasse 55a, 22529 Hamburg, Germany, Von Kroge, S., Wölfel, E., Buravkova, L., Atiakshin, D., Markina, E., Schinke, T., Rolvien, T., Busse, B., & Jähn-Rickert, K. (2021). Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics. European Cells and Materials, 42, 220-231.
  • 21. Durnova, G. N., Burkovskaia, T. E., Vorotnikova, E. V., Kaplanskiĭ, A. S., & Arustamov, O. V. (1991). [The effect of weightlessness on fracture healing of rats flown on the biosatellite Cosmos-2044]. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina, 25(5), 29-33.
  • 22. Ehnert, S., Fentz, A.-K., Schreiner, A., Birk, J., Wilbrand, B., Ziegler, P., Reumann, M. K., Wang, H., Falldorf, K., & Nussler, A. K. (2017). Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2. Scientific Reports, 7(1), 14544.
  • 23. Fan, C., Wu, Z., Cooper, D. M. L., Magnus, A., Harrison, K., Eames, B. F., Chibbar, R., Groot, G., Huang, J., Genth, H., Zhang, J., Tan, X., Deng, Y., & Xiang, J. (2022). Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. International Journal of Molecular Sciences, 23(10), 5593.
  • 24. Ferroni, L., Gardin, C., Dolkart, O., Salai, M., Barak, S., Piattelli, A., Amir-Barak, H., & Zavan, B. (2018). Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: An in-vitro study. Scientific Reports, 8(1), 5108.
  • 25. Frost, E. (2021). Microgravity surgical workstation design. Journal of Space Safety Engineering, 8(3), 193-201.
  • 26. Fu, J., Goldsmith, M., Crooks, S. D., Condon, S. F., Morris, M., & Komarova, S. V. (2021). Bone health in spacefaring rodents and primates: Systematic review and meta-analysis. Npj Microgravity, 7(1), 19.
  • 27. Gu, R., Liu, H., Hu, M., Zhu, Y., Liu, X., Wang, F., Wu, L., Song, D., & Liu, Y. (2023). D-Mannose prevents bone loss under weightlessness. Journal of Translational Medicine, 21(1), 8.
  • 28. Hashem, A., & Shahidi Bonjar, A. H. (2012). Modulating Earth Gravitational Force for Astronauts in Microgravity Environment to Reduce Space Side Effects on Their Health.
  • 29. He, W., Qin, R., Gao, Y., Zhou, J., Wei, J., Liu, J., Hou, X., Ma, H., Xian, C. J., Li, X., & Chen, K. (2022). The interdependent relationship between the nitric oxide signaling pathway and primary cilia in pulse electromagnetic field‐stimulated osteoblastic differentiation. The FASEB Journal, 36(6), e22376.
  • 30. Huang, J., Li, Y., Zhu, S., Wang, L., Pei, H., Wang, X., Bao, T., Jiang, Z., Yang, L., & He, C. (2023). Pulsed Electromagnetic Field Promotes Bone Anabolism in Postmenopausal Osteoporosis through the miR-6976/BMP/Smad4 Axis. Journal of Tissue Engineering and Regenerative Medicine, 2023, 1-13.
  • 31. Jacquet, C., Patel, J., Khoury, P., Huang, X., & Glavas, T. (2024). Orthopedics in Space Travel: Developing Procedures to Evaluate the Safety of Implants Amidst the Rise of Commercial Space Tourism. McGill Science Undergraduate Research Journal, 19(1), 7-12.
  • 32. Jing, D., Zhai, M., Tong, S., Xu, F., Cai, J., Shen, G., Wu, Y., Li, X., Xie, K., Liu, J., Xu, Q., & Luo, E. (2016). Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Scientific Reports, 6(1), 32045.
  • 33. Johnson, W. B., Young, A., Goldman, S., Wilson, J., Alderete, J. F., & Childers, W. L. (2023). Exoskeletal solutions to enable mobility with a lower leg fracture in austere environments. Wearable Technologies, 4, e5.
  • 34. Juhl, O. J., Buettmann, E. G., Friedman, M. A., DeNapoli, R. C., Hoppock, G. A., & Donahue, H. J. (2021). Update on the effects of microgravity on the musculoskeletal system. Npj Microgravity, 7(1), 28.
  • 35. Kaadan, A., Salati, S., Setti, S., & Aaron, R. (2024). Augmentation of Deficient Bone Healing by Pulsed Electromagnetic Fields—From Mechanisms to Clinical Outcomes. Bioengineering, 11(12), 1223.
  • 36. Khan, S. U. E., Varghese, R. J., Kassanos, P., Farina, D., & Burdet, E. (2024). Space Physiology and Technology: Musculoskeletal Adaptations, Countermeasures, and the Opportunity for Wearable Robotics (No. arXiv:2404.03363; Versiyon 1). arXiv.
  • 37. LeBlanc, A., Rowe, R., Evans, H., West, S., Shackelford, L., & Schneider, V. (1997). Muscle Atrophy During Long Duration Bed Rest. International Journal of Sports Medicine, 18(S 4), S283-S285.
  • 38. Lee Satcher, R., Fiedler, B., Ghali, A., & Dirschl, D. R. (2024). Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review. Journal of the American Academy of Orthopaedic Surgeons, 32(12), 535-541.
  • 39. Lewandowski, B. E., Schkurko, C. M., Miller, R. S., Valentine, R. W., Calaway, K. M., Yang, J. D., Ebert, D. J., Sargsyan, A., Byrne, V., Walton, M., Lemery, J., Suresh, R., Thompson, M. S., Easter, B. D., & Lehnhardt, K. R. (2024). Technology modification, development, and demonstrations for future spaceflight medical systems at NASA. Frontiers in Space Technologies, 5, 1384457.
  • 40. Li, W., Li, X., Tian, Y., Chen, X., Zhou, J., Zhu, B., Xi, H., Gao, Y., Xian, C. J., & Chen, K. (2018). Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb‐suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway. Bioelectromagnetics, 39(8), 569-584.
  • 41. Liu, Y., Cao, X., Zhou, Q., Deng, C., Yang, Y., Huang, D., Luo, H., Zhang, S., Li, Y., Xu, J., & Chen, H. (2024). Mechanisms and Countermeasures for Muscle Atrophy in Microgravity. Cells, 13(24), 2120.
  • 42. Lutz, K., Trevino, T., & C., A. (2022, Ekim 24). Modeling Effects of Electromagnetic Fields on Bone Density on Humans in Microgravity. ASCEND 2022. ASCEND 2022, Las Vegas, Nevada & Online.
  • 43. MacFadden, L. N., Adams, L. W., Boerhave, C., O’Connor, H. A., VanDerWolde, B. K., & Skelley, N. W. (2024). Mechanical Analysis of a Novel 3D-printed External Fixator Design Versus Industry-standard External Fixators. The Journal of the American Academy of Orthopaedic Surgeons, 32(7), e331-e345.
  • 44. Man, J., Graham, T., Squires-Donelly, G., & Laslett, A. L. (2022). The effects of microgravity on bone structure and function. Npj Microgravity, 8(1), 9.
  • 45. Manna, O. M., Burgio, S., Picone, D., Carista, A., Pitruzzella, A., Fucarino, A., & Bucchieri, F. (2024). Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. Biology, 13(11), 921.
  • 46. Manon, J., Saint-Guillain, M., Pletser, V., Buckland, D. M., Vico, L., Dobney, W., Baatout, S., Wain, C., Jacobs, J., Comein, A., Drouet, S., Meert, J., Casla, I. S., Chamart, C., Vanderdonckt, J., Cartiaux, O., & Cornu, O. (2023). Adequacy of in-mission training to treat tibial shaft fractures in mars analogue testing. Scientific Reports, 13(1), 18072.
  • 47. Martini, F., Pellati, A., Mazzoni, E., Salati, S., Caruso, G., Contartese, D., & De Mattei, M. (2020). Bone Morphogenetic Protein-2 Signaling in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Induced by Pulsed Electromagnetic Fields. International Journal of Molecular Sciences, 21(6), 2104.
  • 48. Matheson, B. E., Walle, M., Liphardt, A.-M., Hulme, P. A., Heer, M., Zwart, S. R., Sibonga, J. D., Smith, S. M., Gabel, L., & Boyd, S. K. (2025). Recovery of bone microarchitecture and density four years after spaceflight: Two case studies. Npj Microgravity, 11(1), 47.
  • 49. Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., & Li, Z. (2023). 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Journal of Orthopaedic Translation, 42, 94-112.
  • 50. M.K., C., & S.R., S. (2025). Human thermoregulation in microgravity environments: Insights from a computational model. Life Sciences in Space Research, 46, 18-38.
  • 51. Mochi, F., Scatena, E., Rodriguez, D., Ginebra, M.-P., & Del Gaudio, C. (2022). Scaffold-based bone tissue engineering in microgravity: Potential, concerns and implications. Npj Microgravity, 8(1), 45.
  • 52. Muir, J., Xia, Y., Holguin, N., Judex, S., Qin, Y.-X., Jeka, J., Evans, H., Lang, T., & Rubin, C. (2007). Retention of bone density and postural status with a non-invasive extremely low level mechanical signal: A ground based evaluation of efficacy. 2007 IEEE 33rd Annual Northeast Bioengineering Conference, 1-2.
  • 53. Orwoll, E. S., Adler, R. A., Amin, S., Binkley, N., Lewiecki, E. M., Petak, S. M., Shapses, S. A., Sinaki, M., Watts, N. B., & Sibonga, J. D. (2013). Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA bone summit. Journal of Bone and Mineral Research, 28(6), 1243-1255.
  • 54. Perspective: Leveraging Lower Body Negative Pressure for Enhanced Outcomes in Orthopedic Arthroplasty—Insights from NASA’s Bone Health Research. (t.y.). CoLab. Geliş tarihi 26 Aralık 2025, gönderen https://colab.ws/articles/10.1016%2Fj.lssr.2025.04.008
  • 55. Rainey, K. (2024, Ekim 16). Accelerated Model of Age-Related Muscle Loss in Microgravity Could Lead to New Sarcopenia Treatments. ISS National Lab. https://issnationallab.org/press-releases/release-upward72-malany-sarcopenia/
  • 56. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (s. 13048). (2011). National Academies Press.
  • 57. Reynolds, R. J. (2020). Beyond LEO: Human Health Issues for Deep Space Exploration. BoD – Books on Demand.
  • 58. Risk of Bone Fracture due to Spaceflight-induced Changes to Bone—NASA. (2025, Mart 11). https://www.nasa.gov/directorates/esdmd/hhp/risk-of-bone-fracture-due-to-spaceflight-induced-changes-to-bone/
  • 59. Rivera, M. V., Vargas, M., Cornejo, J., Plascencia, P. V., Guillen, K., Maquera, E., Cornejo, J., Russomano, T., & Cinelli, I. (2024). Space Nursing for the Future Management of Astronaut Health in other Planets: A Literature Review. The Open Nursing Journal, 18(1), e18744346289848.
  • 60. Scheuring, R. A., Mathers, C. H., Jones, J. A., & Wear, M. L. (2009). Musculoskeletal Injuries and Minor Trauma in Space: Incidence and Injury Mechanisms in U.S. Astronauts. Aviation, Space, and Environmental Medicine, 80(2), 117-124.
  • 61. Seacord, C. L. (1964, Mayıs 1). Factors affecting the design of flight stabilization and control systems for manned spacecraft. https://ntrs.nasa.gov/citations/19720063754
  • 62. Selvamurugan, N., He, Z., Rifkin, D., Dabovic, B., & Partridge, N. C. (2017). Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF- β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem Cells International, 2017, 1-17.
  • 63. Sharma, S., Banga, N., Sharma, A., Rizvi, M. R., & Sharma, P. (2024). Space Travel and the Musculoskeletal System: İçinde K. L. Tennin & I. Cinelli (Ed.), Advances in Medical Diagnosis, Treatment, and Care (ss. 237-266). IGI Global.
  • 64. Sibonga, J. D., Evans, H. J., Sung, H. G., Spector, E. R., Lang, T. F., Oganov, V. S., Bakulin, A. V., Shackelford, L. C., & LeBlanc, A. D. (2007). Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone, 41(6), 973-978.
  • 65. Skelley, N. Wm. (2023). Design and Development of a Novel 3-D Printed External Fixation Device for Fracture Stabilization. 3D Printing in Medicine, 9(1), 17.
  • 66. Sonawane, R., Patil, S., Rahaman, J., & Mukherjee, D. (2025). Effect of microgravity on bone Tissue: Mechanisms of osteodegeneration and advanced treatment modalities. Biochemical and Biophysical Research Communications, 771, 152055.
  • 67. Space-Age Challenge: Healing Broken Bones, Wounds and Internal Organs. (t.y.). Geliş tarihi 26 Aralık 2025, gönderen https://www.rutgers.edu/news/space-age-challenge-healing-broken-bones-wounds-and-internal-organs
  • 68. Stavnichuk, M., Mikolajewicz, N., Corlett, T., Morris, M., & Komarova, S. V. (2020). A systematic review and meta-analysis of bone loss in space travelers. Npj Microgravity, 6(1), 13.
  • 69. Tanchain. (t.y.). The Technology Status And Research Progress Of Carbon Fiber In Aerospace. Shanghai Tanchain. Geliş tarihi 26 Aralık 2025, gönderen https://www.tchaintech.com/NDETAIL/Carbon_Fabric-Carbon_Fabrics-Carbon_Fibre_Fabric-Carbon_Fabric_Cloth
  • 70. Tatka, L. T., Smith, L. P., Hellerstein, J. L., & Sauro, H. M. (2023). Adapting Modeling and Simulation Credibility Standards to Computational Systems Biology (No. arXiv:2301.06007). arXiv.
  • 71. Touahria, I. E. (2018). Medical systems, the role of middleware and survey on middleware design (No. arXiv:1809.09885). arXiv.
  • 72. Understanding the Superior Performance of UHMWPE in Medical and Aerospace Applications. (2024, Aralık 5). https://aipprecision.com/uhmwpe/
  • 73. Varani, K., Vincenzi, F., Pasquini, S., Blo, I., Salati, S., Cadossi, M., & De Mattei, M. (2021). Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 22(2), 809.
  • 74. Wang, A., Ma, X., Bian, J., Jiao, Z., Zhu, Q., Wang, P., & Zhao, Y. (2024). Signalling pathways underlying pulsed electromagnetic fields in bone repair. Frontiers in Bioengineering and Biotechnology, 12, 1333566.
  • 75. Xie, Y.-F., Shi, W.-G., Zhou, J., Gao, Y.-H., Li, S.-F., Fang, Q.-Q., Wang, M.-G., Ma, H.-P., Wang, J.-F., Xian, C. J., & Chen, K.-M. (2016). Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone, 93, 22-32.
  • 76. Zamarioli, A., Campbell, Z. R., Maupin, K. A., Childress, P. J., Ximenez, J. P. B., Adam, G., Chakraborty, N., Gautam, A., Hammamieh, R., & Kacena, M. A. (2021). Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites. Npj Microgravity, 7(1), 12.
  • 77. Zhang, W. (2023). Mimic Spaceflight: Microgravity Induces Bone Injury. Highlights in Science, Engineering and Technology, 36, 1230-1237.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Giyilebilir Malzemeler, Kompozit ve Hibrit Malzemeler, Havacılık Malzemeleri
Bölüm Derleme
Yazarlar

Ahmet Gül 0009-0007-5248-3162

Ahmet Koluman 0000-0001-5308-8884

Gönderilme Tarihi 30 Ekim 2025
Kabul Tarihi 12 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Gül, A., & Koluman, A. (2025). Mikro Yerçekimi Koşullarında Astronotlarda Kırık Tedavisi İçin Stabilizasyon Cihazları ve Ortopedik Kalıpların Geliştirilmesi. Journal of Aerospace Science and Management, 3(2), 167-194.

ERÜ Havacılık ve Uzay Çalışmaları Uygulama ve Araştırma Merkezi Dergisi 2021 | jasam@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez (CC BY-NC-ND) 4.0 Uluslararası Lisansı ile lisanslanmıştır. by-nc-nd.png