Araştırma Makalesi
BibTex RIS Kaynak Göster

CFD-FEA Entegrasyonu ile Subsonik Füze Kanatçıklarında Alüminyum 5754 ve Karbon Fiber Yapısal Tepkilerinin Kıyaslanması

Yıl 2025, Cilt: 3 Sayı: 2, 131 - 149, 30.12.2025
https://izlik.org/JA99RJ94HU

Öz

Bu çalışmada, 1 Mach altı seyir hızlarında kullanılan füze kanatçık sistemleri için 5754 alüminyum alaşımı ve epoksi matrisli yüksek modüllü karbon fiber takviyeli polimer (CFRP) malzemeler yapısal ve aerodinamik açıdan karşılaştırılmıştır. Öncelikle CFD analizleri ile kanatçık yüzeylerindeki basınç dağılımları belirlenmiş, ardından bu yükler sonlu elemanlar analizlerinde uygulanarak gerilme, deformasyon, güvenlik katsayısı ve titreşim özellikleri hesaplanmıştır. Analizler, aerodinamik yüklerin özellikle kanatçık kök ve ön kenar bölgelerinde yoğunlaştığını göstermiştir. Karbon fiber, düşük yoğunluğu ve yüksek elastisite modülü sayesinde daha düşük deformasyon ve yüksek rijitlik sağlamıştır. Alüminyum ise daha yüksek sönüm oranı ile belirli titreşim senaryolarında avantaj sunmuş, ayrıca üretim, bakım ve onarım kolaylığı açısından öne çıkmıştır. Sonuç olarak, hafiflik ve yüksek rijitliğin öncelikli olduğu durumlarda karbon fiber, maliyet ve bakım kolaylığının öncelikli olduğu durumlarda ise alüminyum tercih edilebilecek malzemeler olarak değerlendirilmiştir.

Kaynakça

  • Bae, J.-S., Shin, W.-H., Lee, I., & Shin, Y.-S. (2002). Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity. Journal of the Korean Society for Aeronautical Space Science, 30(7), 29–35. https://doi.org/10.5139/JKSAS.2002.30.7.029
  • Cook, M. V. (2012). Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Elsevier Science. https://books.google.es/books?id=hgZDmoL4_DcC
  • F.C. Campbell. (2006). Manufacturing Technology for Aerospace Structural Materials. Elsevier. https://doi.org/10.1016/B978-1-85617-495-4.X5000-8
  • Fleeman, E. L. (2006). Tactical Missile Design. American Institute of Aeronautics and Astronautics. https://books.google.ba/books?id=iSsfAQAAIAAJ
  • Gay, D. (2014). Composite Materials. CRC Press. https://doi.org/10.1201/b17106
  • Goulthorpe, P. J. (1961). Missile Configuration Design. S. S. Chin. McGraw-Hill, London. 1961. 279 pp. Diagrams. 85s. 6d. The Journal of the Royal Aeronautical Society, 65, 772. https://api.semanticscholar.org/CorpusID:114854074
  • Kaufman, J. G. . (1999). Properties of aluminum alloys : tensile, creep, and fatigue data at high and low temperatures. ASM International ; Aluminum Association. https://www.asminternational.org/results/-/journal_content/56/06813G/PUBLICATION/
  • KAWAI, M., YAJIMA, S., HACHINOHE, A., & TAKANO, Y. (2001). Off-Axis Fatigue Behavior of Unidirectional Carbon Fiber-Reinforced Composites at Room and High Temperatures. Journal of Composite Materials, 35(7), 545–576. https://doi.org/10.1106/WQMQ-524H-6PKL-NGCY
  • Kim, D.-H., Kim, Y.-S., Kim, Y.-H., & Oh, I.-K. (2008). Supersonic and Hypersonic Flutter Characteristics for Various Typical Section Shapes of Missile Fin. Transactions of the Korean Society for Noise and Vibration Engineering, 18(5), 496–502. https://doi.org/10.5050/KSNVN.2008.18.5.496
  • Kolios, A. J., & Proia, S. (2012). Evaluation of the Reliability Performance of Failure Criteria for Composite Structures. World Journal of Mechanics, 02(03), 162–170. https://doi.org/10.4236/wjm.2012.23019
  • Mallick, P. K. (2007). Fiber-Reinforced Composites. CRC Press. https://doi.org/10.1201/9781420005981
  • Martin, D. J. (1958). Summary of Flutter Experiences as a Guide to the Preliminary Design of Lifting Surfaces on Missiles.
  • Rašuo, B., Vidanović, N., Kastratović, G., & Mirkov, N. (2021). Aerodynamic‐thermal/structural design optimization of missile fin configuration during supersonic flight condition. PAMM, 20(1). https://doi.org/10.1002/pamm.202000220
  • Soutis, C. (2005). Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering: A, 412(1–2), 171–176. https://doi.org/10.1016/J.MSEA.2005.08.064
  • Xiong, X.-H., Chen, B., Tang, M.-Z., Wang, J.-B., Wang, K.-W., & Xue, R.-D. (2025). Fluid–structure interaction analysis of the aeroelastic response in the flexible outer windshield of a high-speed train considering installation location. Physics of Fluids, 37(4). https://doi.org/10.1063/5.0259160
  • Yang, Y.-R., Lee, J.-H., Kim, M.-S., Jung, J.-H., Myong, R.-S., & Cho, T.-H. (2008). Aerodynamic Characteristics of a Canard-Controlled Missile with Freely Spinning Tailfins Using a Semi-Empirical Method and a CFD Code. Journal of the Korean Society for Aeronautical & Space Sciences, 36(3), 220–228. https://doi.org/10.5139/JKSAS.2008.36.3.220

Comparison of Structural Responses of Aluminum 5754 and Carbon Fiber in Subsonic Missile Wings Using CFD-FEA Integration

Yıl 2025, Cilt: 3 Sayı: 2, 131 - 149, 30.12.2025
https://izlik.org/JA99RJ94HU

Öz

This study aims to comparatively analyze the structural performance of metallic (Aluminum 5754) and composite (Epoxy/CFRP) materials used for control flaps in missiles with subsonic flight speeds below Mach 1. Based on the fundamental problem of weight and strength optimization in aerospace structures, a unidirectional analysis method simulating fluid-structure interaction was used. As a method, aerodynamic pressure loads obtained from CFD analyses were integrated into a finite element model (FEA) to examine the stress, deformation, and vibration characteristics of the materials. Numerical results confirmed that aerodynamic loads reached their maximum level at the root and leading edge of the winglets. It was found that carbon fiber reinforced structures offer a distinct advantage over aluminum in limiting deformation and increasing rigidity due to their high specific strength properties. However, it was observed that aluminum material remains a valid alternative due to its damping properties and cost advantages in manufacturing/maintenance processes. As a result of the study, material selection criteria were established based on the “performance/cost” balance required by the mission profile.

Kaynakça

  • Bae, J.-S., Shin, W.-H., Lee, I., & Shin, Y.-S. (2002). Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity. Journal of the Korean Society for Aeronautical Space Science, 30(7), 29–35. https://doi.org/10.5139/JKSAS.2002.30.7.029
  • Cook, M. V. (2012). Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Elsevier Science. https://books.google.es/books?id=hgZDmoL4_DcC
  • F.C. Campbell. (2006). Manufacturing Technology for Aerospace Structural Materials. Elsevier. https://doi.org/10.1016/B978-1-85617-495-4.X5000-8
  • Fleeman, E. L. (2006). Tactical Missile Design. American Institute of Aeronautics and Astronautics. https://books.google.ba/books?id=iSsfAQAAIAAJ
  • Gay, D. (2014). Composite Materials. CRC Press. https://doi.org/10.1201/b17106
  • Goulthorpe, P. J. (1961). Missile Configuration Design. S. S. Chin. McGraw-Hill, London. 1961. 279 pp. Diagrams. 85s. 6d. The Journal of the Royal Aeronautical Society, 65, 772. https://api.semanticscholar.org/CorpusID:114854074
  • Kaufman, J. G. . (1999). Properties of aluminum alloys : tensile, creep, and fatigue data at high and low temperatures. ASM International ; Aluminum Association. https://www.asminternational.org/results/-/journal_content/56/06813G/PUBLICATION/
  • KAWAI, M., YAJIMA, S., HACHINOHE, A., & TAKANO, Y. (2001). Off-Axis Fatigue Behavior of Unidirectional Carbon Fiber-Reinforced Composites at Room and High Temperatures. Journal of Composite Materials, 35(7), 545–576. https://doi.org/10.1106/WQMQ-524H-6PKL-NGCY
  • Kim, D.-H., Kim, Y.-S., Kim, Y.-H., & Oh, I.-K. (2008). Supersonic and Hypersonic Flutter Characteristics for Various Typical Section Shapes of Missile Fin. Transactions of the Korean Society for Noise and Vibration Engineering, 18(5), 496–502. https://doi.org/10.5050/KSNVN.2008.18.5.496
  • Kolios, A. J., & Proia, S. (2012). Evaluation of the Reliability Performance of Failure Criteria for Composite Structures. World Journal of Mechanics, 02(03), 162–170. https://doi.org/10.4236/wjm.2012.23019
  • Mallick, P. K. (2007). Fiber-Reinforced Composites. CRC Press. https://doi.org/10.1201/9781420005981
  • Martin, D. J. (1958). Summary of Flutter Experiences as a Guide to the Preliminary Design of Lifting Surfaces on Missiles.
  • Rašuo, B., Vidanović, N., Kastratović, G., & Mirkov, N. (2021). Aerodynamic‐thermal/structural design optimization of missile fin configuration during supersonic flight condition. PAMM, 20(1). https://doi.org/10.1002/pamm.202000220
  • Soutis, C. (2005). Carbon fiber reinforced plastics in aircraft construction. Materials Science and Engineering: A, 412(1–2), 171–176. https://doi.org/10.1016/J.MSEA.2005.08.064
  • Xiong, X.-H., Chen, B., Tang, M.-Z., Wang, J.-B., Wang, K.-W., & Xue, R.-D. (2025). Fluid–structure interaction analysis of the aeroelastic response in the flexible outer windshield of a high-speed train considering installation location. Physics of Fluids, 37(4). https://doi.org/10.1063/5.0259160
  • Yang, Y.-R., Lee, J.-H., Kim, M.-S., Jung, J.-H., Myong, R.-S., & Cho, T.-H. (2008). Aerodynamic Characteristics of a Canard-Controlled Missile with Freely Spinning Tailfins Using a Semi-Empirical Method and a CFD Code. Journal of the Korean Society for Aeronautical & Space Sciences, 36(3), 220–228. https://doi.org/10.5139/JKSAS.2008.36.3.220
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan-Yapı Etkileşimi ve Aeroakustik
Bölüm Araştırma Makalesi
Yazarlar

Sami Pekdemir 0000-0002-7929-6849

Burhanettin Tuzcu 0009-0005-0830-7773

Gönderilme Tarihi 28 Ekim 2025
Kabul Tarihi 12 Aralık 2025
Erken Görünüm Tarihi 15 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
IZ https://izlik.org/JA99RJ94HU
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Pekdemir, S., & Tuzcu, B. (2025). CFD-FEA Entegrasyonu ile Subsonik Füze Kanatçıklarında Alüminyum 5754 ve Karbon Fiber Yapısal Tepkilerinin Kıyaslanması. Journal of Aerospace Science and Management, 3(2), 131-149. https://izlik.org/JA99RJ94HU

ERÜ Havacılık ve Uzay Çalışmaları Uygulama ve Araştırma Merkezi Dergisi 2021 | jasam@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez (CC BY-NC-ND) 4.0 Uluslararası Lisansı ile lisanslanmıştır. by-nc-nd.png