A Structural Analysis Approach to Burst Failure Assessment in Ti-6Al-4V Jet Engine Discs
Yıl 2025,
Cilt: 3 Sayı: 2, 195 - 204, 30.12.2025
Okan Deniz Yılmaz
,
Murat Buyuk
Öz
The jet engine discs operate under extreme mechanical and thermal loads, and their design is governed by stringent regulations. Full-scale overspeed burst tests are costly and time-consuming, hence high-fidelity structural analysis is expected to predict burst behavior with sufficient accuracy. However, conducting a series of coupon tests to calibrate and validate the material model is still required. In this study, the material model was validated using test coupons, and the overspeed condition of the jet engine disc was modeled. Furthermore, the effect of different material models was investigated during the modeling phase. The test and analysis results reveal that stress triaxiality provide clear insight into the burst-failure mechanism and reduce the costs of serial testing.
Kaynakça
-
1. Arcieri, E. V, & Baragetti, S. (2023). Strength of notched Ti-6Al-4V specimens not subjected to solution treatment and over-aging under cyclic loading. IOP Conference Series: Materials Science and Engineering, 1275(1), 12022.
-
2. Beecher, C., Sepúlveda, H., Oñate, A., Habraken, A. M., Duchêne, L., Pincheira, G., & Tuninetti, V. (2025). Sensitivity Analysis of the Johnson-Cook Model for Ti-6Al-4V in Aeroengine Applications. Aerospace, 12(1).
-
3. Benzerga, A. A., & Leblond, J.-B. (2010). Ductile Fracture by Void Growth to Coalescence. In H. Aref & E. van der Giessen (Eds.), Advances in Applied Mechanics (Vol. 44, pp. 169–305). Elsevier.
-
4. Buyuk, M., Kan, S., & Loikkanen, M. J. (2009). Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material under Impact Loading for Airplane Engine Containment and Fragment Shielding. Journal of Aerospace Engineering, 22(3), 287–295.
-
5. Chen, L., Xuan, H., Jia, W., Liu, J., Fang, Z., & Zheng, Y. (2023). Neck Structure Optimal Design of the Turbine Wheel for Containment Design of the Air Turbine Starter. Aerospace, 10(9).
-
6. Dietenberger, M., Buyuk, M., & Kan, C. D. (n.d.). Development of a high strain-rate dependent vehicle model. LS-DYNA Anwenderforum, Bamberg, 2005. B-III-1-10.
-
7. Elhefny, A., & Liang, G. (2013). Stress and deformation of rocket gas turbine disc under different loads using finite element modelling. Propulsion and Power Research, 2(1), 38–49.
-
8. Kasljevic, K. (2020). Correlation of numerical simulation methods and failure criteria to experimental burst test. ISRN LUTFD2/TFHF-20/5237-SE (1-46).
-
9. Khan, A. S., Kazmi, R., & Farrokh, B. (2007). Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures. International Journal of Plasticity, 23(6), 931–950.
-
10. Ma, M., Wei, D., Wang, Y., Li, D., & Zhang, H. (2021). Strength Evaluation and Failure Analysis of the Vortex Reducer under Overspeed Condition. Aerospace, 8(12).
-
11. Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., & Vogel, F. (2009a). Overspeed burst of elastoviscoplastic rotating disks – Part I: Analytical and numerical stability analyses. European Journal of Mechanics - A/Solids, 28(1), 36–44.
-
12. Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., & Vogel, F. (2009b). Overspeed burst of elastoviscoplastic rotating disks: Part II – Burst of a superalloy turbine disk. European Journal of Mechanics - A/Solids, 28(3), 428–432.
-
13. McClintock, F. A. (1968). A Criterion for Ductile Fracture by the Growth of Holes. Journal of Applied Mechanics, 35(2), 363–371.
-
14. Nozhnitsky, Y. A., & Servetnik, A. N. (2018). Prevention of Hazardous Failure of the Turbine Rotor Due to Its Overspeed. IOP Conference Series: Materials Science and Engineering, 449(1), 012025.
-
15. Peng, J., Zhou, P., Wang, Y., Dai, Q., Knowles, D., & Mostafavi, M. (2021). Stress Triaxiality and Lode Angle Parameter Characterization of Flat Metal Specimen with Inclined Notch. Metals, 11(10).
-
16. Pittman, E. R., Clarke, A. J., & Lamberson, L. E. (2025). A Method for Dynamic Kolsky Bar Compression at High Temperatures: Application to Ti-6Al-4V. Experimental Techniques, 49(3), 475–491.
-
17. Prakash, G., Singh, N. K., & Gupta, N. K. (2023). Flow behaviour of Ti-6Al-4V alloy in a wide range of strain rates and temperatures under tensile, compressive and flexural loads. International Journal of Impact Engineering, 176, 104549.
-
18. S, C. K., A, D. P., Murat, B., & Steve, K. (2009). Generalized, Three-Dimensional Definition, Description, and Derived Limits of the Triaxial Failure of Metals. Journal of Aerospace Engineering, 22(3), 280–286.
-
19. Squarcella, N., Firrone, C. M., Allara, M., & Gola, M. (2014). The importance of the material properties on the burst speed of turbine disks for aeronautical applications. International Journal of Mechanical Sciences, 84, 73–83.
-
20. Tchein, G. J., Jacquin, D., Aldanondo, E., Coupard, D., Gutierrez-Orrantia, E., Girot Mata, F., & Lacoste, E. (2019). Analytical modeling of hot behavior of Ti-6Al-4V alloy at large strain. Materials & Design, 161, 114–123.
-
21. Tvergaard, V. (1978). On the burst strength and necking behaviour of rotating disks. International Journal of Mechanical Sciences, 20(2), 109–120.
-
22. Wang, B., Xiao, X., Astakhov, V. P., & Liu, Z. (2019). The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Engineering Fracture Mechanics, 219, 106627.
-
23. Wang, S., Li, J., Lin, H., Deng, Z., Zhang, B., & Luo, H. (2024). Multiple-Bird-Strike Probability Model and Dynamic Response of Engine Fan Blades. Aerospace, 11(6).
-
24. Wu, B., Lin, J., Xie, A., Wang, N., Zhang, G., Zhang, J., & Dai, H. (2022). Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace, 9(2).
-
25. Yılmaz, O. D., & Nadimi Bavil Oliaei, S. (2020). Effect of constitutive material model on the finite element simulation of shear localization onset. Simulation Modelling Practice and Theory, 104, 102105.
-
26. Zhu, J., Madia, M., Schurig, M., Fedelich, B., Schlums, H., & Zerbst, U. (2023). Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion. Engineering Fracture Mechanics, 277, 109005.
Ti-6Al-4V Jet Motor Disklerinde Patlama Hasarı için Yapısal Analiz Yaklaşımı
Yıl 2025,
Cilt: 3 Sayı: 2, 195 - 204, 30.12.2025
Okan Deniz Yılmaz
,
Murat Buyuk
Öz
Jet motor diskleri, aşırı mekanik ve termal yükler altında çalışmakta olup tasarımları sıkı yönetmeliklere tabidir. Tam ölçekli aşırı hız patlama testleri maliyetli ve zaman alıcı olduğundan, patlama davranışının yeterli doğrulukta tahmin edilmesi için yüksek hassasiyetli yapısal analizler beklenmektedir. Bununla birlikte, malzeme modelini kalibre etmek ve doğrulamak için kupon (numune) testlerinin yapılması hâlâ bir gerekliliktir. Bu çalışmada, test kuponları kullanılarak malzeme modeli doğrulanmış ve jet motor diskinin aşırı hız durumu modellenmiştir. Ayrıca, modelleme aşamasında farklı malzeme modellerinin etkisi de incelenmiştir. Test ve analiz sonuçları, patlama-hasar mekanizmasına dair net öngörü sağlayan ve seri test maliyetlerini düşüren üç eksenlilik parametresinin önemini ortaya koymaktadır.
Kaynakça
-
1. Arcieri, E. V, & Baragetti, S. (2023). Strength of notched Ti-6Al-4V specimens not subjected to solution treatment and over-aging under cyclic loading. IOP Conference Series: Materials Science and Engineering, 1275(1), 12022.
-
2. Beecher, C., Sepúlveda, H., Oñate, A., Habraken, A. M., Duchêne, L., Pincheira, G., & Tuninetti, V. (2025). Sensitivity Analysis of the Johnson-Cook Model for Ti-6Al-4V in Aeroengine Applications. Aerospace, 12(1).
-
3. Benzerga, A. A., & Leblond, J.-B. (2010). Ductile Fracture by Void Growth to Coalescence. In H. Aref & E. van der Giessen (Eds.), Advances in Applied Mechanics (Vol. 44, pp. 169–305). Elsevier.
-
4. Buyuk, M., Kan, S., & Loikkanen, M. J. (2009). Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material under Impact Loading for Airplane Engine Containment and Fragment Shielding. Journal of Aerospace Engineering, 22(3), 287–295.
-
5. Chen, L., Xuan, H., Jia, W., Liu, J., Fang, Z., & Zheng, Y. (2023). Neck Structure Optimal Design of the Turbine Wheel for Containment Design of the Air Turbine Starter. Aerospace, 10(9).
-
6. Dietenberger, M., Buyuk, M., & Kan, C. D. (n.d.). Development of a high strain-rate dependent vehicle model. LS-DYNA Anwenderforum, Bamberg, 2005. B-III-1-10.
-
7. Elhefny, A., & Liang, G. (2013). Stress and deformation of rocket gas turbine disc under different loads using finite element modelling. Propulsion and Power Research, 2(1), 38–49.
-
8. Kasljevic, K. (2020). Correlation of numerical simulation methods and failure criteria to experimental burst test. ISRN LUTFD2/TFHF-20/5237-SE (1-46).
-
9. Khan, A. S., Kazmi, R., & Farrokh, B. (2007). Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures. International Journal of Plasticity, 23(6), 931–950.
-
10. Ma, M., Wei, D., Wang, Y., Li, D., & Zhang, H. (2021). Strength Evaluation and Failure Analysis of the Vortex Reducer under Overspeed Condition. Aerospace, 8(12).
-
11. Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., & Vogel, F. (2009a). Overspeed burst of elastoviscoplastic rotating disks – Part I: Analytical and numerical stability analyses. European Journal of Mechanics - A/Solids, 28(1), 36–44.
-
12. Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., & Vogel, F. (2009b). Overspeed burst of elastoviscoplastic rotating disks: Part II – Burst of a superalloy turbine disk. European Journal of Mechanics - A/Solids, 28(3), 428–432.
-
13. McClintock, F. A. (1968). A Criterion for Ductile Fracture by the Growth of Holes. Journal of Applied Mechanics, 35(2), 363–371.
-
14. Nozhnitsky, Y. A., & Servetnik, A. N. (2018). Prevention of Hazardous Failure of the Turbine Rotor Due to Its Overspeed. IOP Conference Series: Materials Science and Engineering, 449(1), 012025.
-
15. Peng, J., Zhou, P., Wang, Y., Dai, Q., Knowles, D., & Mostafavi, M. (2021). Stress Triaxiality and Lode Angle Parameter Characterization of Flat Metal Specimen with Inclined Notch. Metals, 11(10).
-
16. Pittman, E. R., Clarke, A. J., & Lamberson, L. E. (2025). A Method for Dynamic Kolsky Bar Compression at High Temperatures: Application to Ti-6Al-4V. Experimental Techniques, 49(3), 475–491.
-
17. Prakash, G., Singh, N. K., & Gupta, N. K. (2023). Flow behaviour of Ti-6Al-4V alloy in a wide range of strain rates and temperatures under tensile, compressive and flexural loads. International Journal of Impact Engineering, 176, 104549.
-
18. S, C. K., A, D. P., Murat, B., & Steve, K. (2009). Generalized, Three-Dimensional Definition, Description, and Derived Limits of the Triaxial Failure of Metals. Journal of Aerospace Engineering, 22(3), 280–286.
-
19. Squarcella, N., Firrone, C. M., Allara, M., & Gola, M. (2014). The importance of the material properties on the burst speed of turbine disks for aeronautical applications. International Journal of Mechanical Sciences, 84, 73–83.
-
20. Tchein, G. J., Jacquin, D., Aldanondo, E., Coupard, D., Gutierrez-Orrantia, E., Girot Mata, F., & Lacoste, E. (2019). Analytical modeling of hot behavior of Ti-6Al-4V alloy at large strain. Materials & Design, 161, 114–123.
-
21. Tvergaard, V. (1978). On the burst strength and necking behaviour of rotating disks. International Journal of Mechanical Sciences, 20(2), 109–120.
-
22. Wang, B., Xiao, X., Astakhov, V. P., & Liu, Z. (2019). The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Engineering Fracture Mechanics, 219, 106627.
-
23. Wang, S., Li, J., Lin, H., Deng, Z., Zhang, B., & Luo, H. (2024). Multiple-Bird-Strike Probability Model and Dynamic Response of Engine Fan Blades. Aerospace, 11(6).
-
24. Wu, B., Lin, J., Xie, A., Wang, N., Zhang, G., Zhang, J., & Dai, H. (2022). Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace, 9(2).
-
25. Yılmaz, O. D., & Nadimi Bavil Oliaei, S. (2020). Effect of constitutive material model on the finite element simulation of shear localization onset. Simulation Modelling Practice and Theory, 104, 102105.
-
26. Zhu, J., Madia, M., Schurig, M., Fedelich, B., Schlums, H., & Zerbst, U. (2023). Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion. Engineering Fracture Mechanics, 277, 109005.