Yanma Deneylerinde Kullanılan Seyrelticilerin Yanma Üzerindeki Çeşitli Etkileri
Yıl 2024,
Cilt: 2 Sayı: 3, 113 - 127, 31.12.2024
Erdem Değer
,
Murat Taştan
Öz
İklim değişikliği ozon tabakasının incelmesine, mevsimlerin değişmesine ve dünyanın ısısının artmasına neden olmaktadır. Günümüzde yükselen sıcaklıklar ile buzulların erimesi ve mevsim normallerinin üstünde seyreden sıcaklıklar küresel ısınmanın hayatımıza olan olumsuz etkilerini daha da net olarak göstermektedir. Bu bağlamda alternatif yakıt ve yanma yöntemleri arayışı hız kazanmıştır. Fosil yakıtlar halen enerji ihtiyacımızın büyük bir bölümünü karşılamaktadır. Yenilenebilir ve sürdürülebilir enerji için çalışmalar hız kazansa da fosil yakıtlardan hem zararlı emisyon değerleri düşük olacak hem de enerji çıkışıyla verimi en yüksek seviyeye çıkaracak çözümler aranmaktadır. Seyreltme sadece yanma tepkimelerinde kullanılmamaktadır. Kimya, Gıda endüstrisi gibi alanlarda da kullanılan yöntem alanlarındaki çalışmalara katkı sağlamaktadır. Bu çalışmada seyreltme yönteminin yanma performansı üzerindeki etkisi literatür çalışması kapsamında araştırılmıştır. Örneklem olarak seçilen seyrelticiler ise N2, CO2, Ar ve H2O olarak belirlenmiştir ve belirlenen seyrelticilere ait çalışmalarda seyreltme sonuçlarının tepkimeye olan çeşitli etkileri görülmektedir. Yapılan çalışmalarda seyreltmenin laminer yanma hızına, alev sıcaklığına olan etkisi, eşdeğerlik oranlarının seyreltme için optimum aralıkları ve seyreltme sonucu emisyon değerlerindeki değişim gibi etmenler ele alınmıştır.
Etik Beyan
Bu çalışmanın özgün bir çalışma olduğunu; çalışmanın hazırlık, bilgi toplama analiz ve bilgilerin sunumu olmak üzere tüm aşamalarında bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında ele alınan tüm çalışmalar için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Journal of Aerospace Science and Management (JASAM)' ın tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.
Destekleyen Kurum
Erciyes Üniversitesi
Teşekkür
Çalışmanın her aşamasında yardımcı ve yol gösteren tavsiyeleriyle beni aydınlatan, ilgi ve yardımlarını esirgemeyen Dr. Öğr. Üyesi Murat TAŞTAN' a teşekkürü borç bilirim.
Kaynakça
- Alabaş, B., Yılmaz, İ., & Çam, Y. (2023). N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement. Propulsion and Power Research, 12(4), 486–504. https://doi.org/10.1016/j.jppr.2023.09.001
- Burbano, H. J., Pareja, J., & Amell, A. A. (2011). Laminar burning velocities and flame stability analysis of H 2/CO/air mixtures with dilution of N2 and CO2. International Journal of Hydrogen Energy, 36(4), 3232–3242. https://doi.org/10.1016/j.ijhydene.2010.11.089
- Cao, Z., & Zhu, T. (2011). Effects of diluents addition on laminar burning velocity of premixed methane flames. Tongji Daxue Xuebao/Journal of Tongji University, 39(10), 1557–1562. https://doi.org/10.3969/j.issn.0253-374x.2011.10.027
- Chan, Y. L., Zhu, M. M., Zhang, Z. Z., Liu, P. F., & Zhang, D. K. (2015). The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames. Energy Procedia, 75, 3048–3053. https://doi.org/10.1016/j.egypro.2015.07.621
- Chu, H., Xiang, L., Meng, S., Dong, W., Gu, M., & Li, Z. (2021). Effects of N2 dilution on laminar burning velocity, combustion characteristics and NOx emissions of rich CH4–air premixed flames. Fuel, 284(August 2020), 119017. https://doi.org/10.1016/j.fuel.2020.119017
- Dai, C., Shu, Z., Li, P., & Mi, J. (2018). Combustion Characteristics of a Methane Jet Flame in Hot Oxidant Coflow Diluted by H2O versus the Case by N2. Energy and Fuels, 32(1), 875–888. https://doi.org/10.1021/acs.energyfuels.7b03060
- De Persis, S., Cabot, G., Pillier, L., Gökalp, I., & Boukhalfa, A. M. (2013). Study of lean premixed methane combustion with CO2 dilution under gas turbine conditions. Energy and Fuels, 27(2), 1093–1103. https://doi.org/10.1021/ef3016365
- Duan, J., & Liu, F. (2017). Laminar combustion characteristics and mechanism of hydrogen/air mixture diluted with N2 + H2O. International Journal of Hydrogen Energy, 42(7), 4501–4507. https://doi.org/10.1016/j.ijhydene.2016.10.071
- Endouard, C., Halter, F., Chauveau, C., & Foucher, F. (2016). Effects of CO2, H2O, and Exhaust Gas Recirculation Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures. Combustion Science and Technology, 188(4–5), 516–528. https://doi.org/10.1080/00102202.2016.1138792
- Global Carbon Project. (2020). Global Carbon Budget | Global Carbon Atlas. Global Carbon Budget 2010-2019, 93(November). http://www.globalcarbonatlas.org/en/content/global-carbon-budget
- Han, M., Ai, Y., Chen, Z., & Kong, W. (2015). Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel, 148, 32–38. https://doi.org/10.1016/j.fuel.2015.01.083
- Hu, E., Jiang, X., Huang, Z., & Iida, N. (2012). Numerical study on the effects of diluents on the laminar burning velocity of methane-air mixtures. Energy and Fuels, 26(7), 4242–4252. https://doi.org/10.1021/ef300535s
- International Energy Agency. (2023). CO 2 Emissions in 2023. International Energy Agency, 24, 22.
- Kumuk, O. (2024). CO2, Ar, and He dilution effects on combustion dynamics and characteristics in a laboratory-scale combustor. Fuel, 369(X), 131745. https://doi.org/10.1016/j.fuel.2024.131745
- Lee, T. Y. K. and S. H. (2012). Combustion and Emission Characteristics of Wood Pyrolysis Oil-Butanol Blended Fuels in a Di Diesel Engine. International Journal of Automotive Technology, 13(2), 293–300. https://doi.org/10.1007/s12239
- Mazas, A. N., Lacoste, D. A., & Schuller, T. (2010). Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H 2O. Proceedings of the ASME Turbo Expo, 2(PARTS A AND B), 411–421. https://doi.org/10.1115/GT2010-22512
- Nair, A., Velamati, R. K., & Kumar, S. (2016). Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures. Energy, 100, 145–153. https://doi.org/10.1016/j.energy.2016.01.094
- Öztürk, S. (2019). The Effects of CO2, N2, and H2O Dilutions on NO Formation of Partially Premixed Synthesis Gas Combustion. Cumhuriyet Science Journal, 40(4), 813–818. https://doi.org/10.17776/csj.543130
- Paidi, S. K., Bhavaraju, A., Akram, M., & Kumar, S. (2013). Effect of N2/CO2 dilution on laminar burning velocity of H2-air mixtures at high temperatures. International Journal of Hydrogen Energy, 38(31), 13812–13821. https://doi.org/10.1016/j.ijhydene.2013.08.024
- Prathap, C., Ray, A., & Ravi, M. R. (2008). Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combustion and Flame, 155(1–2), 145–160. https://doi.org/10.1016/j.combustflame.2008.04.005
- Prathap, C., Ray, A., & Ravi, M. R. (2012). Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H 2-CO mixtures at atmospheric condition. Combustion and Flame, 159(2), 482–492. https://doi.org/10.1016/j.combustflame.2011.08.006
- Rangrazi, A., Niazmand, H., & Heravi, H. M. (2013). Experimental study of argon dilution effects on NOx emission in a non-premixed flame in comparison with nitrogen. Korean Journal of Chemical Engineering, 30(8), 1588–1593. https://doi.org/10.1007/s11814-013-0088-6
- Ratna Kishore, V., Muchahary, R., Ray, A., & Ravi, M. R. (2009). Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar. International Journal of Hydrogen Energy, 34(19), 8378–8388. https://doi.org/10.1016/j.ijhydene.2009.07.029
- Ren, F., Xiang, L., Chu, H., Jiang, H., & Ya, Y. (2020). Modeling Study of the Impact of Blending N2, CO2, and H2O on Characteristics of CH4 Laminar Premixed Combustion. Energy and Fuels, 34(2), 1184–1192. https://doi.org/10.1021/acs.energyfuels.9b02108
- Ritchie, H., & Roser, M. (2024). Energy Production and Consumption - Our World in Data. In Our World in Data. https://ourworldindata.org/energy-production-consumption
- Sahin, M., & Ilbas, M. (2020). Analysis of the effect of H2O content on combustion behaviours of a biogas fuel. International Journal of Hydrogen Energy, 45(5), 3651–3659. https://doi.org/10.1016/j.ijhydene.2019.02.042
- Sahu, A., Wang, C., Jiang, C., Xu, H., Ma, X., Xu, C., & Bao, X. (2019). Effect of CO2 and N2 dilution on laminar premixed MTHF/air flames: Experiments and kinetic studies. Fuel, 255(March). https://doi.org/10.1016/j.fuel.2019.115659
- Sharma, S., Chowdhury, A., & Kumar, S. (2022). Effect of CO2/N2 Dilution on Characteristics of Liquid Fuel Combustion in Flameless Combustion Mode. Combustion Science and Technology, 194(4), 721–744. https://doi.org/10.1080/00102202.2020.1780582
- Shi, G., Li, P., Hu, F., & Liu, Z. (2022). NO mechanisms of syngas MILD combustion diluted with N2, CO2, and H2O. International Journal of Hydrogen Energy, 47(37), 16649–16664. https://doi.org/10.1016/j.ijhydene.2022.03.123
- Slefarski, R. (2019). Study on the combustion process of premixed methane flames with CO 2 dilution at elevated pressures. Energies, 12(3). https://doi.org/10.3390/en12030348
- Wei, H., Xu, Z., Zhou, L., Zhao, J., & Yu, J. (2018). Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space. International Journal of Hydrogen Energy, 43(31), 14798–14805. https://doi.org/10.1016/j.ijhydene.2018.06.038
- Xie, Y., Wang, J., Xu, N., Yu, S., & Huang, Z. (2014). Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures. International Journal of Hydrogen Energy, 39(7), 3450–3458. https://doi.org/10.1016/j.ijhydene.2013.12.037
- Yilmaz, I., Cam, Y., & Alabas, B. (2022). Effect of N2 dilution on combustion instabilities and emissions in biogas flame. Fuel, 308(April 2021), 121943. https://doi.org/10.1016/j.fuel.2021.121943
- Zaidaoui, H., Boushaki, T., Sautet, J. C., Chauveau, C., Sarh, B., & Gökalp, I. (2018). Effects of CO2 Dilution and O2 Enrichment on Non-premixed Turbulent CH4-Air Flames in a Swirl Burner. Combustion Science and Technology, 190(5), 784–802. https://doi.org/10.1080/00102202.2017.1409217
- Zhang, B., Shen, X., & Pang, L. (2015). Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether-air mixtures. Fuel, 159, 646–652. https://doi.org/10.1016/j.fuel.2015.07.019
- Zhang, B., Xiu, G., & Bai, C. (2014). Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures. Fuel, 124, 125–132. https://doi.org/10.1016/j.fuel.2014.01.090
- Zhang, Y., Yang, T., Liu, X., Tian, L., Fu, Z., & Zhang, K. (2012). Reduction of emissions from a syngas flame using micromixing and dilution with CO2. Energy and Fuels, 26(11), 6595–6601. https://doi.org/10.1021/ef300751d
- Zhaoyang Chen, Liangjie, W., Zuohua, H., Haiyan, M., Xibin, W., & Deming, J. (2009). Measurement of laminar burning velocities of dimethyl ether-air premixed mixtures with N2 and CO2 dilution. Energy and Fuels, 23(2), 735–739. https://doi.org/10.1021/ef8008663
Various Effects of Diluents Used in Combustion Experiments on Combustion
Yıl 2024,
Cilt: 2 Sayı: 3, 113 - 127, 31.12.2024
Erdem Değer
,
Murat Taştan
Öz
Climate change causes the ozone layer to deplete, the seasons to change and the earth's temperature to increase. Today, rising temperatures, melting of glaciers and temperatures above seasonal normals show the negative effects of global warming on our lives even more clearly. In this context, the search for alternative fuels and combustion methods has gained momentum. Fossil fuels still meet a large part of our energy needs. Although studies for renewable and sustainable energy are gaining momentum, solutions are sought that will both reduce harmful emission values from fossil fuels and maximize efficiency with energy output. Dilution is not only used in combustion reactions. It contributes to studies in the field of methods used in areas such as chemistry and food industry. In this study, the effect of dilution method on combustion performance was investigated within the scope of the literature study. The diluents selected as samples were determined as N2, CO2, Ar and H2O and various effects of dilution results on the reaction are seen in the studies of the determined diluents. In the studies, factors such as the effect of dilution on laminar combustion rate, flame temperature, optimum ranges of equivalence ratios for dilution and change in emission values as a result of dilution were discussed.
Kaynakça
- Alabaş, B., Yılmaz, İ., & Çam, Y. (2023). N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement. Propulsion and Power Research, 12(4), 486–504. https://doi.org/10.1016/j.jppr.2023.09.001
- Burbano, H. J., Pareja, J., & Amell, A. A. (2011). Laminar burning velocities and flame stability analysis of H 2/CO/air mixtures with dilution of N2 and CO2. International Journal of Hydrogen Energy, 36(4), 3232–3242. https://doi.org/10.1016/j.ijhydene.2010.11.089
- Cao, Z., & Zhu, T. (2011). Effects of diluents addition on laminar burning velocity of premixed methane flames. Tongji Daxue Xuebao/Journal of Tongji University, 39(10), 1557–1562. https://doi.org/10.3969/j.issn.0253-374x.2011.10.027
- Chan, Y. L., Zhu, M. M., Zhang, Z. Z., Liu, P. F., & Zhang, D. K. (2015). The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames. Energy Procedia, 75, 3048–3053. https://doi.org/10.1016/j.egypro.2015.07.621
- Chu, H., Xiang, L., Meng, S., Dong, W., Gu, M., & Li, Z. (2021). Effects of N2 dilution on laminar burning velocity, combustion characteristics and NOx emissions of rich CH4–air premixed flames. Fuel, 284(August 2020), 119017. https://doi.org/10.1016/j.fuel.2020.119017
- Dai, C., Shu, Z., Li, P., & Mi, J. (2018). Combustion Characteristics of a Methane Jet Flame in Hot Oxidant Coflow Diluted by H2O versus the Case by N2. Energy and Fuels, 32(1), 875–888. https://doi.org/10.1021/acs.energyfuels.7b03060
- De Persis, S., Cabot, G., Pillier, L., Gökalp, I., & Boukhalfa, A. M. (2013). Study of lean premixed methane combustion with CO2 dilution under gas turbine conditions. Energy and Fuels, 27(2), 1093–1103. https://doi.org/10.1021/ef3016365
- Duan, J., & Liu, F. (2017). Laminar combustion characteristics and mechanism of hydrogen/air mixture diluted with N2 + H2O. International Journal of Hydrogen Energy, 42(7), 4501–4507. https://doi.org/10.1016/j.ijhydene.2016.10.071
- Endouard, C., Halter, F., Chauveau, C., & Foucher, F. (2016). Effects of CO2, H2O, and Exhaust Gas Recirculation Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures. Combustion Science and Technology, 188(4–5), 516–528. https://doi.org/10.1080/00102202.2016.1138792
- Global Carbon Project. (2020). Global Carbon Budget | Global Carbon Atlas. Global Carbon Budget 2010-2019, 93(November). http://www.globalcarbonatlas.org/en/content/global-carbon-budget
- Han, M., Ai, Y., Chen, Z., & Kong, W. (2015). Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel, 148, 32–38. https://doi.org/10.1016/j.fuel.2015.01.083
- Hu, E., Jiang, X., Huang, Z., & Iida, N. (2012). Numerical study on the effects of diluents on the laminar burning velocity of methane-air mixtures. Energy and Fuels, 26(7), 4242–4252. https://doi.org/10.1021/ef300535s
- International Energy Agency. (2023). CO 2 Emissions in 2023. International Energy Agency, 24, 22.
- Kumuk, O. (2024). CO2, Ar, and He dilution effects on combustion dynamics and characteristics in a laboratory-scale combustor. Fuel, 369(X), 131745. https://doi.org/10.1016/j.fuel.2024.131745
- Lee, T. Y. K. and S. H. (2012). Combustion and Emission Characteristics of Wood Pyrolysis Oil-Butanol Blended Fuels in a Di Diesel Engine. International Journal of Automotive Technology, 13(2), 293–300. https://doi.org/10.1007/s12239
- Mazas, A. N., Lacoste, D. A., & Schuller, T. (2010). Experimental and numerical investigation on the laminar flame speed of CH4/O2 mixtures diluted with CO2 and H 2O. Proceedings of the ASME Turbo Expo, 2(PARTS A AND B), 411–421. https://doi.org/10.1115/GT2010-22512
- Nair, A., Velamati, R. K., & Kumar, S. (2016). Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures. Energy, 100, 145–153. https://doi.org/10.1016/j.energy.2016.01.094
- Öztürk, S. (2019). The Effects of CO2, N2, and H2O Dilutions on NO Formation of Partially Premixed Synthesis Gas Combustion. Cumhuriyet Science Journal, 40(4), 813–818. https://doi.org/10.17776/csj.543130
- Paidi, S. K., Bhavaraju, A., Akram, M., & Kumar, S. (2013). Effect of N2/CO2 dilution on laminar burning velocity of H2-air mixtures at high temperatures. International Journal of Hydrogen Energy, 38(31), 13812–13821. https://doi.org/10.1016/j.ijhydene.2013.08.024
- Prathap, C., Ray, A., & Ravi, M. R. (2008). Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combustion and Flame, 155(1–2), 145–160. https://doi.org/10.1016/j.combustflame.2008.04.005
- Prathap, C., Ray, A., & Ravi, M. R. (2012). Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H 2-CO mixtures at atmospheric condition. Combustion and Flame, 159(2), 482–492. https://doi.org/10.1016/j.combustflame.2011.08.006
- Rangrazi, A., Niazmand, H., & Heravi, H. M. (2013). Experimental study of argon dilution effects on NOx emission in a non-premixed flame in comparison with nitrogen. Korean Journal of Chemical Engineering, 30(8), 1588–1593. https://doi.org/10.1007/s11814-013-0088-6
- Ratna Kishore, V., Muchahary, R., Ray, A., & Ravi, M. R. (2009). Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar. International Journal of Hydrogen Energy, 34(19), 8378–8388. https://doi.org/10.1016/j.ijhydene.2009.07.029
- Ren, F., Xiang, L., Chu, H., Jiang, H., & Ya, Y. (2020). Modeling Study of the Impact of Blending N2, CO2, and H2O on Characteristics of CH4 Laminar Premixed Combustion. Energy and Fuels, 34(2), 1184–1192. https://doi.org/10.1021/acs.energyfuels.9b02108
- Ritchie, H., & Roser, M. (2024). Energy Production and Consumption - Our World in Data. In Our World in Data. https://ourworldindata.org/energy-production-consumption
- Sahin, M., & Ilbas, M. (2020). Analysis of the effect of H2O content on combustion behaviours of a biogas fuel. International Journal of Hydrogen Energy, 45(5), 3651–3659. https://doi.org/10.1016/j.ijhydene.2019.02.042
- Sahu, A., Wang, C., Jiang, C., Xu, H., Ma, X., Xu, C., & Bao, X. (2019). Effect of CO2 and N2 dilution on laminar premixed MTHF/air flames: Experiments and kinetic studies. Fuel, 255(March). https://doi.org/10.1016/j.fuel.2019.115659
- Sharma, S., Chowdhury, A., & Kumar, S. (2022). Effect of CO2/N2 Dilution on Characteristics of Liquid Fuel Combustion in Flameless Combustion Mode. Combustion Science and Technology, 194(4), 721–744. https://doi.org/10.1080/00102202.2020.1780582
- Shi, G., Li, P., Hu, F., & Liu, Z. (2022). NO mechanisms of syngas MILD combustion diluted with N2, CO2, and H2O. International Journal of Hydrogen Energy, 47(37), 16649–16664. https://doi.org/10.1016/j.ijhydene.2022.03.123
- Slefarski, R. (2019). Study on the combustion process of premixed methane flames with CO 2 dilution at elevated pressures. Energies, 12(3). https://doi.org/10.3390/en12030348
- Wei, H., Xu, Z., Zhou, L., Zhao, J., & Yu, J. (2018). Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space. International Journal of Hydrogen Energy, 43(31), 14798–14805. https://doi.org/10.1016/j.ijhydene.2018.06.038
- Xie, Y., Wang, J., Xu, N., Yu, S., & Huang, Z. (2014). Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures. International Journal of Hydrogen Energy, 39(7), 3450–3458. https://doi.org/10.1016/j.ijhydene.2013.12.037
- Yilmaz, I., Cam, Y., & Alabas, B. (2022). Effect of N2 dilution on combustion instabilities and emissions in biogas flame. Fuel, 308(April 2021), 121943. https://doi.org/10.1016/j.fuel.2021.121943
- Zaidaoui, H., Boushaki, T., Sautet, J. C., Chauveau, C., Sarh, B., & Gökalp, I. (2018). Effects of CO2 Dilution and O2 Enrichment on Non-premixed Turbulent CH4-Air Flames in a Swirl Burner. Combustion Science and Technology, 190(5), 784–802. https://doi.org/10.1080/00102202.2017.1409217
- Zhang, B., Shen, X., & Pang, L. (2015). Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether-air mixtures. Fuel, 159, 646–652. https://doi.org/10.1016/j.fuel.2015.07.019
- Zhang, B., Xiu, G., & Bai, C. (2014). Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures. Fuel, 124, 125–132. https://doi.org/10.1016/j.fuel.2014.01.090
- Zhang, Y., Yang, T., Liu, X., Tian, L., Fu, Z., & Zhang, K. (2012). Reduction of emissions from a syngas flame using micromixing and dilution with CO2. Energy and Fuels, 26(11), 6595–6601. https://doi.org/10.1021/ef300751d
- Zhaoyang Chen, Liangjie, W., Zuohua, H., Haiyan, M., Xibin, W., & Deming, J. (2009). Measurement of laminar burning velocities of dimethyl ether-air premixed mixtures with N2 and CO2 dilution. Energy and Fuels, 23(2), 735–739. https://doi.org/10.1021/ef8008663