Araştırma Makalesi
BibTex RIS Kaynak Göster

Roketlerde kanat geometrisinin statik stabiliteye etkilerinin sayısal olarak incelenmesi

Yıl 2025, Cilt: 5 Sayı: 2, 123 - 132, 31.08.2025
https://doi.org/10.52995/jass.1744172

Öz

Bu çalışmada, roket sistemlerinde kullanılan farklı kanatçık geometrilerinin statik kararlılık üzerindeki etkisi sayısal analiz yoluyla araştırılmıştır. Roket sistemlerinde aerodinamik kararlılığın sağlanması, özellikle yüksek hızlı uçuş sırasında sapma ve kararsızlığın önlenmesi için büyük önem taşımaktadır. Bu bağlamda, ileri süpürülmüş delta, ileri süpürülmüş delta, eliptik ve trapez olmak üzere dört farklı kanatçık geometrisi hem OpenRocket simülasyonları hem de ANSYS Fluent tabanlı Hesaplamalı Akışkanlar Dinamiği analizi kullanılarak değerlendirilmiştir. OpenRocket, roketin basınç merkezini (CP) ve kütle merkezini (CG) belirlemiş ve statik marjları hesaplamıştır. Her kanatçık tipi için kaldırma kuvveti, sürükleme kuvveti ve moment değerleri HAD analizi yoluyla elde edilmiştir. Ayrıca, elde edilen veriler MATLAB'da oluşturulan bir uçuş dinamiği modeline beslenerek zamanla değişen yönelimleri analiz edilmiştir. Sonuçlar, eliptik kanatçıkların minimum sürükleme katsayılarıyla en verimli çözümü sunduğunu, ileri süpürülmüş delta kanatların ise irtifa ve kaldırma performansı açısından üstün olduğunu göstermiştir. Çalışmanın sonuçları, roket tasarım sürecinde stabilizatörlerin optimum seçimi için mühendislik tabanlı öneriler sunmaktadır.

Etik Beyan

Bu araştırma, İskenderun Teknik Üniversitesi Fen Bilimleri Enstitüsü'nde yürütülen bir yüksek lisans tezinin sonuçlarına dayanmaktadır. Bu makale araştırma ve yayın etiği standartlarını karşılamaktadır.

Proje Numarası

Söz Konusu Değilidir

Kaynakça

  • Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control: A History of the Technologies That Made Aviation Possible. Cambridge University Press.
  • Anderson, J. D. (2010). Fundamentals of Aerodynamics (5th ed.). McGraw-Hill Education.
  • ANSYS, Inc. (2020). ANSYS Fluent Theory Guide. ANSYS, Inc., Canonsburg.
  • Barnard, R. H., & Philpott, D. R. (2010). Aircraft Flight: A Description of the Physical Principles of Aircraft Flight. Pearson Education.
  • Barokah, A. D. N., ... & Hoa, N. L. (2024). A comparative analysis of the aerodynamic performance: Straight fin and curved fin rockets using Computational Fluid Dynamics (CFD). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 115(1), 1-18. https://doi.org/10.37934/arfmts.115.1.118
  • Bordachev, V. A. (2023). Static stability study of a model rocket. Siberian Aerospace Journal, 24(1), 64-75. doi: 10.31772/10.31772/2712-8970-2023-24-1-64-75
  • Boumrar, I., & Djebali, R. (2019). Experimental validation of pressure distribution prediction under delta wing apex vortex at high Reynolds numbers. CFD Letters, 11(3), 92-102. https://akademiabaru.com/submit/index.php/cfdl/article/view/3146/2180
  • Cesnik, C. E. S., Hodges, D. H., & Patil, M. J. (1996). Aeroelastic analysis of composite wings. AIAA Meeting Papers on Disc, 1996, 1113-1123. https://doi.org/10.2514/6.1996-1444
  • Faery, H. F. Jr., Strozier, J. K., & Ham, J. A. (1981). Experimental and theoretical study of three interacting, closely-spaced, sharp-edged 60 deg delta wings at low speeds. NASA Contractor Report 3460. https://ntrs.nasa.gov/api/citations/19810024617/downloads/19810024617.pdf
  • Fortescue, P., Swinerd, G., & Stark, J. (2011). Spacecraft Systems Engineering. John Wiley & Sons. https://doi.org/10.1002/9781119971009
  • Huang, D. H., & Huzel, D. K. (1992). Modern Engineering for Design of Liquid-Propellant Rocket Engines. American Institute of Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.866197
  • Mahmood, C. A., & Das, R. K. (2019). Performance comparison of different winglets by CFD. AIP Conference Proceedings, 2121, 060006. https://doi.org/10.1063/1.5115907
  • NASA Glenn Research Center (t.y.-a). Rocket Center of Pressure. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-center-of-pressure/ sayfasından alınmıştır.
  • NASA Glenn Research Center (t.y.-b). Rocket Stability. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-stability/ sayfasından alınmıştır.
  • OpenRocket (2023). [Computer software]. http://openrocket.info/
  • Rahman, H., Khushnood, S., Raza, A., & Ahmad, K. (2013). Experimental and computational investigation of delta wing aerodynamics. In: Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 2013, 203-208. doi:10.1109/IBCAST.2013.6512155
  • Roberts, D. W. (2006). The Aerodynamic Analysis and Aeroelastic Tailoring of a Forward-Swept Wing. North Carolina State University. https://repository.lib.ncsu.edu/server/api/core/bitstreams/813d5ee5-3211-4485-b2da-503a7ff54fc2/content
  • Ruffles, W., & Dakka, S. M. (2016). Aerodynamic flow characteristics of utilizing delta wing configurations in supersonic and subsonic flight regimes. Journal of Communication and Computer, 13, 299-318. doi:10.17265/1548-7709/2016.06.004
  • Sadraey, M. H. (2012). Aircraft Design: A Systems Engineering Approach. John Wiley & Sons. doi:10.1002/9781118352700
  • Sutton, G. P., & Biblarz, O. (2016). Rocket Propulsion Elements. Wiley.
  • Wibowo, S. B., Sutrisno, S., & Rohmat, T. A. (2018). An evaluation of turbulence model for vortexbreakdown detection over delta wing. Archive of Mechanical Engineering, 65(3), 399 – 415. https://doi.org/10.24425/124489

Numerical investigation of the effects of wing geometry on static stability in rockets

Yıl 2025, Cilt: 5 Sayı: 2, 123 - 132, 31.08.2025
https://doi.org/10.52995/jass.1744172

Öz

In this study, the effects of different fin geometries used in rocket systems on static stability were investigated through numerical analysis. Ensuring aerodynamic stability in rocket systems is crucial for preventing yaw and instability, especially during high-speed flight. In this context, four different fin geometries—forward-swept delta, forward-swept delta, elliptical, and trapezoidal—were evaluated using both OpenRocket simulations and ANSYS Fluent-based Computational Fluid Dynamics (CFD) analysis. OpenRocket determined the rocket's Center of Pressure (CP) and center of mass (CG) and calculated the static margins. Lift, drag, and moment values for each fin type were obtained through CFD analysis. Furthermore, the obtained data were fed into a flight dynamics model created in MATLAB to analyze their time-varying orientations. The results showed that elliptical fins offer the most efficient solution with minimum drag coefficients, while forward-swept delta wings are superior in terms of altitude and lift performance. The results of the study provide engineering-based recommendations for the optimum selection of stabilizers in the rocket design process.

Etik Beyan

This research is based on the results of a master's thesis conducted at the Institute of Science at İskenderun Technical University. This article complies with the rules of research and publication ethics.

Proje Numarası

Söz Konusu Değilidir

Kaynakça

  • Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control: A History of the Technologies That Made Aviation Possible. Cambridge University Press.
  • Anderson, J. D. (2010). Fundamentals of Aerodynamics (5th ed.). McGraw-Hill Education.
  • ANSYS, Inc. (2020). ANSYS Fluent Theory Guide. ANSYS, Inc., Canonsburg.
  • Barnard, R. H., & Philpott, D. R. (2010). Aircraft Flight: A Description of the Physical Principles of Aircraft Flight. Pearson Education.
  • Barokah, A. D. N., ... & Hoa, N. L. (2024). A comparative analysis of the aerodynamic performance: Straight fin and curved fin rockets using Computational Fluid Dynamics (CFD). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 115(1), 1-18. https://doi.org/10.37934/arfmts.115.1.118
  • Bordachev, V. A. (2023). Static stability study of a model rocket. Siberian Aerospace Journal, 24(1), 64-75. doi: 10.31772/10.31772/2712-8970-2023-24-1-64-75
  • Boumrar, I., & Djebali, R. (2019). Experimental validation of pressure distribution prediction under delta wing apex vortex at high Reynolds numbers. CFD Letters, 11(3), 92-102. https://akademiabaru.com/submit/index.php/cfdl/article/view/3146/2180
  • Cesnik, C. E. S., Hodges, D. H., & Patil, M. J. (1996). Aeroelastic analysis of composite wings. AIAA Meeting Papers on Disc, 1996, 1113-1123. https://doi.org/10.2514/6.1996-1444
  • Faery, H. F. Jr., Strozier, J. K., & Ham, J. A. (1981). Experimental and theoretical study of three interacting, closely-spaced, sharp-edged 60 deg delta wings at low speeds. NASA Contractor Report 3460. https://ntrs.nasa.gov/api/citations/19810024617/downloads/19810024617.pdf
  • Fortescue, P., Swinerd, G., & Stark, J. (2011). Spacecraft Systems Engineering. John Wiley & Sons. https://doi.org/10.1002/9781119971009
  • Huang, D. H., & Huzel, D. K. (1992). Modern Engineering for Design of Liquid-Propellant Rocket Engines. American Institute of Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.866197
  • Mahmood, C. A., & Das, R. K. (2019). Performance comparison of different winglets by CFD. AIP Conference Proceedings, 2121, 060006. https://doi.org/10.1063/1.5115907
  • NASA Glenn Research Center (t.y.-a). Rocket Center of Pressure. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-center-of-pressure/ sayfasından alınmıştır.
  • NASA Glenn Research Center (t.y.-b). Rocket Stability. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/rocket-stability/ sayfasından alınmıştır.
  • OpenRocket (2023). [Computer software]. http://openrocket.info/
  • Rahman, H., Khushnood, S., Raza, A., & Ahmad, K. (2013). Experimental and computational investigation of delta wing aerodynamics. In: Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 2013, 203-208. doi:10.1109/IBCAST.2013.6512155
  • Roberts, D. W. (2006). The Aerodynamic Analysis and Aeroelastic Tailoring of a Forward-Swept Wing. North Carolina State University. https://repository.lib.ncsu.edu/server/api/core/bitstreams/813d5ee5-3211-4485-b2da-503a7ff54fc2/content
  • Ruffles, W., & Dakka, S. M. (2016). Aerodynamic flow characteristics of utilizing delta wing configurations in supersonic and subsonic flight regimes. Journal of Communication and Computer, 13, 299-318. doi:10.17265/1548-7709/2016.06.004
  • Sadraey, M. H. (2012). Aircraft Design: A Systems Engineering Approach. John Wiley & Sons. doi:10.1002/9781118352700
  • Sutton, G. P., & Biblarz, O. (2016). Rocket Propulsion Elements. Wiley.
  • Wibowo, S. B., Sutrisno, S., & Rohmat, T. A. (2018). An evaluation of turbulence model for vortexbreakdown detection over delta wing. Archive of Mechanical Engineering, 65(3), 399 – 415. https://doi.org/10.24425/124489
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hava-Uzay Ulaşımı, Havacılık Yapıları, Uzay Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Polat Çelik 0009-0003-1324-4370

Mehmet Sabancı 0009-0004-4246-5815

Hasan Sarpkaya 0009-0000-8167-686X

Sezer Çoban 0000-0001-6750-5001

Proje Numarası Söz Konusu Değilidir
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 16 Temmuz 2025
Kabul Tarihi 26 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

APA Çelik, P., Sabancı, M., Sarpkaya, H., Çoban, S. (2025). Roketlerde kanat geometrisinin statik stabiliteye etkilerinin sayısal olarak incelenmesi. Havacılık ve Uzay Çalışmaları Dergisi, 5(2), 123-132. https://doi.org/10.52995/jass.1744172