Year 2022,
, 41 - 50, 31.12.2022
Süleyman Dirik
,
Ümit Çelik
References
- [1] Atçeken, M. and Dirik, S. 2014. On the geometry of pseudo-slant submanifolds of a kenmotsu manifold, Gulf Journal of Mathematics 2: 51–66.
- [2] Atçeken, M. and Hui, S. K. 2013. Slant and pseudo-slant submanifolds in (lCS)n-manifolds, Czechoslovak M.J. 63: 177–190.
- [3] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 1999. Slant submanifolds in sasakian manifolds, Geomeatriae Dedicata 78: 183–199.
- [4] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 2000. Slant submanifolds in sasakian manifolds, Glasgow Math, J. 42: 125–138.
- [5] Chen, B. 1990a. Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, Belgium, View at Zentralblatt Math.
- [6] Chen, B. 1990b. Slant immersions, Austral. Math. Soc. 41: 135–147.
- [7] De, U. C. and Sarkar, A. 2004. On pseudo-slant submanifolds of trans sasakian manifolds slant submanifolds, Procedings of the Estonian A.S 60: 1–11.
- [8] Dirik, S., Atçeken, M. and Yıldırım, U. 2017. Contact pseude-slant submanifold of a normal paracontact metric manifolds, International Journal of Applied Mathemaatics and Statistics
56: 33–41.
- [9] Dirik, S., Atçeken, M. and Yıldırım, U. 2018. On the geometry of contact pseudo-slant submanifolds in an (lCS)n-manifold, International Journal of Applied Mathematics and Statistics 2: 96–109.
- [10] Dirik, S., Yıldırım, U. 2022. Characterization of contact pseudo-slant submanifolds of a para Kenmotsu manifold, Journal of Amasya University the Institute of Sciences and Technology 3: 49–59.
- [11] Hui, S., Atçeken, M. and Pal, T. 2017. Warped product pseudo-slant submanifolds of (lCS)n-manifolds, New Trens in Math. Sciences 5: 204–212.
- [12] Khan, V. A. and Khan, M. A. 2007. Pseudo-slant submanifolds of a sasakian manifold, Indian
J. prue appl. Math. 38: 31–42.
- [13] Lotta, A. 1996. Slant submanifolds in contact geometry, Bulletin Mathematical Society Roumanie 39: 183–198.
- [14] Matsumoto, K. and Mihai, I. 1988. On a cartein transformation in a lorentzian para sasakian manifold, Tensor, New Ser. 47: 189–197.
- [15] Mihai, I. and Cheen, B. 2009. classificiation of a quasi-minimal slant surfaces in lorentzian complex space forms, Acta Math. Hung. 122: 307–328.
- [16] Papaghuic 2009. Semi-slant submanifolds of a kaehlarian manifold, An. St. Univ. Al. I. Cuza.
Univ. 40: 55–61.
- [17] Shaikh, A. A. 2003. On lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43: 305–314.
- [18] Shaikh, A. A. and Bahishya, K. 2005. On concircular structure spacetimes, J. Math. Stat.
1: 129–132.
- [19] Shaikh, Kim, H. and Hui, S. 2011. On lorentzian quasi-einstein manifolds, J. Korean Math. Soc. 48: 669–689.
- [20] Yano, K. 1940. Concircular geometry. 1. concircular transformations., Proc. Tmp. Acad. Jop. 16: 195–200.
On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds
Year 2022,
, 41 - 50, 31.12.2022
Süleyman Dirik
,
Ümit Çelik
Abstract
In this study, we investigate the differential geometry of contact pseudo-slant submanifolds of a (LCS)n -manifold. The necessary and sufficient conditions for contact pseudo-slant submanifolds of a (LCS)n-manifold are given.
References
- [1] Atçeken, M. and Dirik, S. 2014. On the geometry of pseudo-slant submanifolds of a kenmotsu manifold, Gulf Journal of Mathematics 2: 51–66.
- [2] Atçeken, M. and Hui, S. K. 2013. Slant and pseudo-slant submanifolds in (lCS)n-manifolds, Czechoslovak M.J. 63: 177–190.
- [3] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 1999. Slant submanifolds in sasakian manifolds, Geomeatriae Dedicata 78: 183–199.
- [4] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 2000. Slant submanifolds in sasakian manifolds, Glasgow Math, J. 42: 125–138.
- [5] Chen, B. 1990a. Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, Belgium, View at Zentralblatt Math.
- [6] Chen, B. 1990b. Slant immersions, Austral. Math. Soc. 41: 135–147.
- [7] De, U. C. and Sarkar, A. 2004. On pseudo-slant submanifolds of trans sasakian manifolds slant submanifolds, Procedings of the Estonian A.S 60: 1–11.
- [8] Dirik, S., Atçeken, M. and Yıldırım, U. 2017. Contact pseude-slant submanifold of a normal paracontact metric manifolds, International Journal of Applied Mathemaatics and Statistics
56: 33–41.
- [9] Dirik, S., Atçeken, M. and Yıldırım, U. 2018. On the geometry of contact pseudo-slant submanifolds in an (lCS)n-manifold, International Journal of Applied Mathematics and Statistics 2: 96–109.
- [10] Dirik, S., Yıldırım, U. 2022. Characterization of contact pseudo-slant submanifolds of a para Kenmotsu manifold, Journal of Amasya University the Institute of Sciences and Technology 3: 49–59.
- [11] Hui, S., Atçeken, M. and Pal, T. 2017. Warped product pseudo-slant submanifolds of (lCS)n-manifolds, New Trens in Math. Sciences 5: 204–212.
- [12] Khan, V. A. and Khan, M. A. 2007. Pseudo-slant submanifolds of a sasakian manifold, Indian
J. prue appl. Math. 38: 31–42.
- [13] Lotta, A. 1996. Slant submanifolds in contact geometry, Bulletin Mathematical Society Roumanie 39: 183–198.
- [14] Matsumoto, K. and Mihai, I. 1988. On a cartein transformation in a lorentzian para sasakian manifold, Tensor, New Ser. 47: 189–197.
- [15] Mihai, I. and Cheen, B. 2009. classificiation of a quasi-minimal slant surfaces in lorentzian complex space forms, Acta Math. Hung. 122: 307–328.
- [16] Papaghuic 2009. Semi-slant submanifolds of a kaehlarian manifold, An. St. Univ. Al. I. Cuza.
Univ. 40: 55–61.
- [17] Shaikh, A. A. 2003. On lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43: 305–314.
- [18] Shaikh, A. A. and Bahishya, K. 2005. On concircular structure spacetimes, J. Math. Stat.
1: 129–132.
- [19] Shaikh, Kim, H. and Hui, S. 2011. On lorentzian quasi-einstein manifolds, J. Korean Math. Soc. 48: 669–689.
- [20] Yano, K. 1940. Concircular geometry. 1. concircular transformations., Proc. Tmp. Acad. Jop. 16: 195–200.