Research Article
BibTex RIS Cite

APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS

Year 2021, Volume: 2 Issue: 1, 31 - 37, 30.06.2021

Abstract

Bağlayıcı grup olarak ftalosiyanin halkasına karboksilik asit fonksiyonlandırlmış asimetrik çinko ftalosiyanin (GT4) molekülü daha önce belirtilen prosedürlerimize uygun olarak hazırlnamıştır. Molekül yapısı spektroskopik yöntemler (FT-IR, MALDI-MS, UV-VIS) ile aydınlatılmıştır.
Bu çalışmada peripheral pozisyonda heksiltiya ve karboksilik asit grupu içeren ftalosiyanin molekülü sentezlenmiş ve bu grupların OFET performansı üzerine etkileri araştırılmıştır.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

114M488

Thanks

The Scientific and Technological Research Council of Turkey (TUBITAK) is gratefully acknowledged for funding through the project 114M488 coupled to the COST Action MP1307.

References

  • 1. Dong S., Tian H., Huang L., Zhang J., Yan D., Geng Y., & Wang F. (2011). Non-Peripheral Tetrahexyl-Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π-π Stacking for Solution-Processed Organic Field-Effect Transistors. Advanced Materials, 23(25): 2850–2854.
  • 2. Chaure N. B., Cammidge A. N., Chambrier I., Cook M. J., Ray A. K. (2015). A Tetrabenzotriazaporphyrin Based Organic Thin Film Transistor: Comparison with a Device of the Phthalocyanine Analogue. ECS Journal of Solid-State Science and Technology, 4(4): P3086–P3090.
  • 3. Sirringhaus H. (2005). Device physics of solution‐processed organic field‐effect transistors. Advanced Materials, 17(20), 2411-2425.
  • 4. Lever ABP., Leznoff CC. (1996). Phthalocyanine: properties and applications. Advanced Materials, Vol. 4 p.536.
  • 5. Bottari G., Torre G. de la, Guldi, D.M., Torres T. (2010). Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical Reviews, 110, 6768–6816.
  • 6. Canımkurbey B., Taşkan M. C., Demir S., Duygulu, E., Atilla D., Yuksel F. (2020). Synthesis, and Investigation of Electrical Properties of Novel Liquid-Crystal Phthalocyanines bearing triple branched alkylthia chains. New Journal of Chemistry, 44, 7424-7435.
  • 7. Warner M., Din S., Tupitsyn I.S., Morley G.W., Stoneham A.M., Bahçıvan J.A., Wu Z., Fisher A.J., Heutz S., Kay CW., Aeppli G. (2013). Potential for spin-based information processing in a thin-film molecular semiconductor. Nature, 503, 504-508.
  • 8. Forrest S.R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428,9.
  • 9. Scheinert S,. Paasch G,. Hörselmann I., Herasimovich A. (2010). Low-cost submicrometer organic fieled effect transistors. Advances in Polymer Science, 223,155.
  • 10. Gürol İ., Ahsen V., and Bekaroǧlu Ö. (1994). Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with Ag I and Pd II. J. Chem. Soc., Dalt. Trans., 0, 497–500.
  • 11. Canlica M., Nyokong T. (2011). Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 30, 1975–1981.
  • 12. Tunç G., Güzel E., Şişman İ., Ahsen V., Cardenas-J. G. (2019). Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New J. Chem., 43, 14390–14401.
  • 13. Tunç G., Albakour M., Ahsen V., Gürek AG. (2019). Peripherally carboxylic acid substituted asymmetric zinc(II) phthalocyanines: Synthesis and photophysicochemical properties. J. Porphyrins and Phthalocyanines, 23, 1355-1364.
  • 14. L. Sun. (2015). Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology, 26, 30.
Year 2021, Volume: 2 Issue: 1, 31 - 37, 30.06.2021

Abstract

Project Number

114M488

References

  • 1. Dong S., Tian H., Huang L., Zhang J., Yan D., Geng Y., & Wang F. (2011). Non-Peripheral Tetrahexyl-Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π-π Stacking for Solution-Processed Organic Field-Effect Transistors. Advanced Materials, 23(25): 2850–2854.
  • 2. Chaure N. B., Cammidge A. N., Chambrier I., Cook M. J., Ray A. K. (2015). A Tetrabenzotriazaporphyrin Based Organic Thin Film Transistor: Comparison with a Device of the Phthalocyanine Analogue. ECS Journal of Solid-State Science and Technology, 4(4): P3086–P3090.
  • 3. Sirringhaus H. (2005). Device physics of solution‐processed organic field‐effect transistors. Advanced Materials, 17(20), 2411-2425.
  • 4. Lever ABP., Leznoff CC. (1996). Phthalocyanine: properties and applications. Advanced Materials, Vol. 4 p.536.
  • 5. Bottari G., Torre G. de la, Guldi, D.M., Torres T. (2010). Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical Reviews, 110, 6768–6816.
  • 6. Canımkurbey B., Taşkan M. C., Demir S., Duygulu, E., Atilla D., Yuksel F. (2020). Synthesis, and Investigation of Electrical Properties of Novel Liquid-Crystal Phthalocyanines bearing triple branched alkylthia chains. New Journal of Chemistry, 44, 7424-7435.
  • 7. Warner M., Din S., Tupitsyn I.S., Morley G.W., Stoneham A.M., Bahçıvan J.A., Wu Z., Fisher A.J., Heutz S., Kay CW., Aeppli G. (2013). Potential for spin-based information processing in a thin-film molecular semiconductor. Nature, 503, 504-508.
  • 8. Forrest S.R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428,9.
  • 9. Scheinert S,. Paasch G,. Hörselmann I., Herasimovich A. (2010). Low-cost submicrometer organic fieled effect transistors. Advances in Polymer Science, 223,155.
  • 10. Gürol İ., Ahsen V., and Bekaroǧlu Ö. (1994). Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with Ag I and Pd II. J. Chem. Soc., Dalt. Trans., 0, 497–500.
  • 11. Canlica M., Nyokong T. (2011). Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 30, 1975–1981.
  • 12. Tunç G., Güzel E., Şişman İ., Ahsen V., Cardenas-J. G. (2019). Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New J. Chem., 43, 14390–14401.
  • 13. Tunç G., Albakour M., Ahsen V., Gürek AG. (2019). Peripherally carboxylic acid substituted asymmetric zinc(II) phthalocyanines: Synthesis and photophysicochemical properties. J. Porphyrins and Phthalocyanines, 23, 1355-1364.
  • 14. L. Sun. (2015). Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology, 26, 30.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Gülenay Tunç

Betül Canımkurbey

Ayşe Gül Gurek

Project Number 114M488
Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Tunç, G., Canımkurbey, B., & Gül Gurek, A. (2021). APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. Journal of Amasya University the Institute of Sciences and Technology, 2(1), 31-37.
AMA Tunç G, Canımkurbey B, Gül Gurek A. APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. J. Amasya Univ. Inst. Sci. Technol. June 2021;2(1):31-37.
Chicago Tunç, Gülenay, Betül Canımkurbey, and Ayşe Gül Gurek. “APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS”. Journal of Amasya University the Institute of Sciences and Technology 2, no. 1 (June 2021): 31-37.
EndNote Tunç G, Canımkurbey B, Gül Gurek A (June 1, 2021) APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. Journal of Amasya University the Institute of Sciences and Technology 2 1 31–37.
IEEE G. Tunç, B. Canımkurbey, and A. Gül Gurek, “APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS”, J. Amasya Univ. Inst. Sci. Technol., vol. 2, no. 1, pp. 31–37, 2021.
ISNAD Tunç, Gülenay et al. “APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS”. Journal of Amasya University the Institute of Sciences and Technology 2/1 (June 2021), 31-37.
JAMA Tunç G, Canımkurbey B, Gül Gurek A. APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. J. Amasya Univ. Inst. Sci. Technol. 2021;2:31–37.
MLA Tunç, Gülenay et al. “APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS”. Journal of Amasya University the Institute of Sciences and Technology, vol. 2, no. 1, 2021, pp. 31-37.
Vancouver Tunç G, Canımkurbey B, Gül Gurek A. APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. J. Amasya Univ. Inst. Sci. Technol. 2021;2(1):31-7.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).