Research Article
BibTex RIS Cite

Normal paracontact metric space form on $W_0$-curvature tensor

Year 2023, Volume: 4 Issue: 1, 33 - 41, 02.07.2023
https://doi.org/10.54559/jauist.1312242

Abstract

In this article, normal paracontact metric space forms are investigated on $W_0$-curvature tensor. Characterizations of normal paracontact space forms are obtained on $W_0$-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, and concircular curvature tensors are discussed on $W_0$-curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact metric space forms are obtained. Finally, the need for further research is discussed.

References

  • S. Kenayuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173–187.
  • S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (2009) 37–60.
  • J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results in Mathematics, 54 (2009) 377–387.
  • J. Welyczko, Slant curves in 3-dimensional normal contact metric manifolds, Mediterranean Journal of Mathematics 11 (2014) 965–978.
  • H. B. Pandey, A. Kumar, Anti invariant submanifolds of almost paracontact metric manifolds, Indian Journal of Pure and Applied Mathematics 16 (6) (1985) 586–590.
  • Ü. Yıldırım, M. Atçeken, S. Dirik, S. A normal paracontact metric manifold satisfying some conditions on the M-projectivecurvature tensor. Konuralp Journal of Mathematics 7 (1) (2019) 217–221.
  • Ü. Yıldırım, M. Atçeken, S. Dirik, Pseudo projective curvature tensor satisfying some properties on a normal paracontactmetric manifold, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (1) (2019) 997–1006.
  • M. Tripathi, P. Gupta, τ-Curvature Tensor on A Semi-Riemannian Manifold. Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129.
Year 2023, Volume: 4 Issue: 1, 33 - 41, 02.07.2023
https://doi.org/10.54559/jauist.1312242

Abstract

References

  • S. Kenayuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173–187.
  • S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (2009) 37–60.
  • J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results in Mathematics, 54 (2009) 377–387.
  • J. Welyczko, Slant curves in 3-dimensional normal contact metric manifolds, Mediterranean Journal of Mathematics 11 (2014) 965–978.
  • H. B. Pandey, A. Kumar, Anti invariant submanifolds of almost paracontact metric manifolds, Indian Journal of Pure and Applied Mathematics 16 (6) (1985) 586–590.
  • Ü. Yıldırım, M. Atçeken, S. Dirik, S. A normal paracontact metric manifold satisfying some conditions on the M-projectivecurvature tensor. Konuralp Journal of Mathematics 7 (1) (2019) 217–221.
  • Ü. Yıldırım, M. Atçeken, S. Dirik, Pseudo projective curvature tensor satisfying some properties on a normal paracontactmetric manifold, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (1) (2019) 997–1006.
  • M. Tripathi, P. Gupta, τ-Curvature Tensor on A Semi-Riemannian Manifold. Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129.
There are 8 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Tuğba Mert 0000-0001-8258-8298

Mehmet Atçeken 0000-0002-1242-4359

Pakize Uygun 0000-0001-8226-4269

Publication Date July 2, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Mert, T., Atçeken, M., & Uygun, P. (2023). Normal paracontact metric space form on $W_0$-curvature tensor. Journal of Amasya University the Institute of Sciences and Technology, 4(1), 33-41. https://doi.org/10.54559/jauist.1312242
AMA Mert T, Atçeken M, Uygun P. Normal paracontact metric space form on $W_0$-curvature tensor. J. Amasya Univ. Inst. Sci. Technol. July 2023;4(1):33-41. doi:10.54559/jauist.1312242
Chicago Mert, Tuğba, Mehmet Atçeken, and Pakize Uygun. “Normal Paracontact Metric Space Form on $W_0$-Curvature Tensor”. Journal of Amasya University the Institute of Sciences and Technology 4, no. 1 (July 2023): 33-41. https://doi.org/10.54559/jauist.1312242.
EndNote Mert T, Atçeken M, Uygun P (July 1, 2023) Normal paracontact metric space form on $W_0$-curvature tensor. Journal of Amasya University the Institute of Sciences and Technology 4 1 33–41.
IEEE T. Mert, M. Atçeken, and P. Uygun, “Normal paracontact metric space form on $W_0$-curvature tensor”, J. Amasya Univ. Inst. Sci. Technol., vol. 4, no. 1, pp. 33–41, 2023, doi: 10.54559/jauist.1312242.
ISNAD Mert, Tuğba et al. “Normal Paracontact Metric Space Form on $W_0$-Curvature Tensor”. Journal of Amasya University the Institute of Sciences and Technology 4/1 (July 2023), 33-41. https://doi.org/10.54559/jauist.1312242.
JAMA Mert T, Atçeken M, Uygun P. Normal paracontact metric space form on $W_0$-curvature tensor. J. Amasya Univ. Inst. Sci. Technol. 2023;4:33–41.
MLA Mert, Tuğba et al. “Normal Paracontact Metric Space Form on $W_0$-Curvature Tensor”. Journal of Amasya University the Institute of Sciences and Technology, vol. 4, no. 1, 2023, pp. 33-41, doi:10.54559/jauist.1312242.
Vancouver Mert T, Atçeken M, Uygun P. Normal paracontact metric space form on $W_0$-curvature tensor. J. Amasya Univ. Inst. Sci. Technol. 2023;4(1):33-41.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).