Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 2, 72 - 81, 31.12.2023
https://doi.org/10.54559/jauist.1312261

Abstract

References

  • K. Kenmotsu, A class of contact Riemannian manifolds, Tohoku Mathematical Journal 24 (1) (1972) 93–103.
  • A. Haseeb, Some results on projective curvature tensor in an ε-Kenmotsu manifold, Palestine Journal of Mathematics 6 (Special Issue: II) (2017) 196–203.
  • Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (4) (2014) 839–847.
  • Y. Wang, W. Wang, An Einstein-like metric on almost Kenmotsu manifold, Filomat 31 (15) (2017) 4695–4702.
  • C. Özgür, U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17 (2) (2006) 221–228.
  • M. M. Tripathi, P. Gupta, τ-curvature tensor on a semi-Riemannian manifold, Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129.
  • R. N. Singh, S. K. Pandey, G. Pandey, On W_2-curvature tensor in a Kenmotsu manifold, Tamsui Oxford Journal of Information and Mathematical Sciences 29 (2) (2013) 129–141.
  • D. G. Prakasha, B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskole Mathematical Notes 19 (1) (2018) 491–503.
  • U. C. De, G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian Journal of Pure and Applied Mathematics 35 (2) (2004) 159–165.
  • K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science 6 (55) (1) (2013) 9–22.
  • M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics 6 (7) (2021) 7320–7332.
  • P. Uygun, S. Dirik, M. Atçeken, T. Mert, Some characterizations invariant submanifolds of a (κ,μ)-para contact space, Journal of Engineering Research and Applied Science 1 (11) (2022) 1967–1972.
  • T. Mert, M. Atçeken, A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds, Filomat 37 (15) (2023) 5095–5107.

Pseudoparallel invariant submanifolds of Kenmotsu manifolds

Year 2023, Volume: 4 Issue: 2, 72 - 81, 31.12.2023
https://doi.org/10.54559/jauist.1312261

Abstract

In this paper, we consider pseudoparallel invariant submanifolds, a particular class of invariant submanifolds of Kenmotsu manifolds, on $W_8$ curvature tensor and investigate some of their basic characterizations, such as $W_8$ pseudoparallel, $W_8$-2 pseudoparallel, $W_8$-Ricci generalized pseudoparallel, and $W_8$-2 Ricci generalized pseudoparallel. Moreover, we present some relations between these pseudoparallel invariant submanifolds and semi-parallel invariant submanifolds. We finally discuss the need for further research.

References

  • K. Kenmotsu, A class of contact Riemannian manifolds, Tohoku Mathematical Journal 24 (1) (1972) 93–103.
  • A. Haseeb, Some results on projective curvature tensor in an ε-Kenmotsu manifold, Palestine Journal of Mathematics 6 (Special Issue: II) (2017) 196–203.
  • Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (4) (2014) 839–847.
  • Y. Wang, W. Wang, An Einstein-like metric on almost Kenmotsu manifold, Filomat 31 (15) (2017) 4695–4702.
  • C. Özgür, U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17 (2) (2006) 221–228.
  • M. M. Tripathi, P. Gupta, τ-curvature tensor on a semi-Riemannian manifold, Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129.
  • R. N. Singh, S. K. Pandey, G. Pandey, On W_2-curvature tensor in a Kenmotsu manifold, Tamsui Oxford Journal of Information and Mathematical Sciences 29 (2) (2013) 129–141.
  • D. G. Prakasha, B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskole Mathematical Notes 19 (1) (2018) 491–503.
  • U. C. De, G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian Journal of Pure and Applied Mathematics 35 (2) (2004) 159–165.
  • K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science 6 (55) (1) (2013) 9–22.
  • M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics 6 (7) (2021) 7320–7332.
  • P. Uygun, S. Dirik, M. Atçeken, T. Mert, Some characterizations invariant submanifolds of a (κ,μ)-para contact space, Journal of Engineering Research and Applied Science 1 (11) (2022) 1967–1972.
  • T. Mert, M. Atçeken, A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds, Filomat 37 (15) (2023) 5095–5107.
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Mehmet Atçeken 0000-0002-1242-4359

Nurnisa Karaman

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Atçeken, M., & Karaman, N. (2023). Pseudoparallel invariant submanifolds of Kenmotsu manifolds. Journal of Amasya University the Institute of Sciences and Technology, 4(2), 72-81. https://doi.org/10.54559/jauist.1312261
AMA Atçeken M, Karaman N. Pseudoparallel invariant submanifolds of Kenmotsu manifolds. J. Amasya Univ. Inst. Sci. Technol. December 2023;4(2):72-81. doi:10.54559/jauist.1312261
Chicago Atçeken, Mehmet, and Nurnisa Karaman. “Pseudoparallel Invariant Submanifolds of Kenmotsu Manifolds”. Journal of Amasya University the Institute of Sciences and Technology 4, no. 2 (December 2023): 72-81. https://doi.org/10.54559/jauist.1312261.
EndNote Atçeken M, Karaman N (December 1, 2023) Pseudoparallel invariant submanifolds of Kenmotsu manifolds. Journal of Amasya University the Institute of Sciences and Technology 4 2 72–81.
IEEE M. Atçeken and N. Karaman, “Pseudoparallel invariant submanifolds of Kenmotsu manifolds”, J. Amasya Univ. Inst. Sci. Technol., vol. 4, no. 2, pp. 72–81, 2023, doi: 10.54559/jauist.1312261.
ISNAD Atçeken, Mehmet - Karaman, Nurnisa. “Pseudoparallel Invariant Submanifolds of Kenmotsu Manifolds”. Journal of Amasya University the Institute of Sciences and Technology 4/2 (December 2023), 72-81. https://doi.org/10.54559/jauist.1312261.
JAMA Atçeken M, Karaman N. Pseudoparallel invariant submanifolds of Kenmotsu manifolds. J. Amasya Univ. Inst. Sci. Technol. 2023;4:72–81.
MLA Atçeken, Mehmet and Nurnisa Karaman. “Pseudoparallel Invariant Submanifolds of Kenmotsu Manifolds”. Journal of Amasya University the Institute of Sciences and Technology, vol. 4, no. 2, 2023, pp. 72-81, doi:10.54559/jauist.1312261.
Vancouver Atçeken M, Karaman N. Pseudoparallel invariant submanifolds of Kenmotsu manifolds. J. Amasya Univ. Inst. Sci. Technol. 2023;4(2):72-81.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).