Research Article
BibTex RIS Cite

Source of semiprimeness of $\ast$-prime rings

Year 2024, Volume: 5 Issue: 1, 43 - 48, 29.10.2024
https://doi.org/10.54559/jauist.1552047

Abstract

This study constructs a structure $S_{R}^{\ast}$ that had never been studied before and obtained new results by defining a subset $S_{R}^{\ast}$ of $R$ as
$S_{R}^{\ast}=\left\{ \left. a\in R\right\vert aRa=aRa^{\ast}=(0)\right\} $ where $\ast$ is an involution and it is called as the source of $\ast$-semiprimeness of $R$. Moreover, it investigates some properties of the subset $S_{R}^{\ast}$ in any ring $R$. Additionally, the relation between the prime radical, which provides the opportunity to work on prime rings, has been studied in many ways, and the set $\mathcal{S}_{R}^{\sigma}$, the motivation of this study, is provided. Furthermore, it is proved that $\mathcal{S}_{R}^{\sigma}=\{0\}$ in the case where the ring $R$ is a reduced ($\sigma$-semiprime) ring and $f(\mathcal{S}_{R}^{\sigma})=\mathcal{S}_{f(R)}^{\sigma}$ under certain conditions for a ring homomorphism $f$. Besides, it is presented that for the idempotent element $e$, the inclusion $e\mathcal{S}_{R}^{\sigma}e\subseteq\mathcal{S}_{eRe}^{\sigma}$ is provided, and for the right ideal (ideal) $I$ of the ring $R$, $\mathcal{S}_{R}^{\sigma}(I)$ is a left semigroup ideal (semigroup ideal) of the multiplicative semigroup $R$. In addition, it is analyzed that the set $\mathcal{S}_{R}^{\sigma}$ is contained by the intersection of all semiprime ideals of the ring $R$.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi

Project Number

FBA-2019-2812

References

  • I. N. Herstein, Rings with involution, Chicago lectures in mathematics, The University of Chicago Press, Chicago, 1976.
  • L. Oukhtite, S. Salhi, Centralizing automorphisms and Jordan left derivations on σ-prime rings, Advances in Algebra 1 (1) (2008) 19–26.
  • L. Oukhtite, S. Salhi, On commutativity of σ-prime rings, Glasnik Matematicki Series III 41 (61) (2006) 57–64.
  • N. U. Rehman, R. M. Al-Omary, A. Z. Ansari, On Lie ideals of ∗-prime rings with generalized derivations, Boletin de la Sociedad Matematica Mexicana 21 (2015) 19–26.
  • N. H. McCoy, The theory of rings, The Macmillan & Co LTD., New York, 1964.
  • M. Ashraf, S. Ali, On left multipliers and commutativity of prime rings, Demonstratio Mathematica 4 (41) (2008) 764–771.
  • H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canadian Mathematical Bulletin 30 (1) (1987) 92–101.
  • L. Molna´r, On centralizers of an H*-algebra, Publicationes Mathematicae Debrecen 46 (1-2) (1995) 89–95.
  • E. C. Posner, Derivations in prime rings, Proceedings of the American Mathematical Society 8 (1957) 1093–1100.
  • J. Mayne, Centralizing automorphisms of prime rings, Canadian Mathematical Bulletin 19 (1976) 113–115.
  • N. Aydın, Ç. Demir, D. Karalarlıoğlu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083–1096.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation, Çanakkale Onsekiz Mart University (2017) Çanakkale.
Year 2024, Volume: 5 Issue: 1, 43 - 48, 29.10.2024
https://doi.org/10.54559/jauist.1552047

Abstract

Project Number

FBA-2019-2812

References

  • I. N. Herstein, Rings with involution, Chicago lectures in mathematics, The University of Chicago Press, Chicago, 1976.
  • L. Oukhtite, S. Salhi, Centralizing automorphisms and Jordan left derivations on σ-prime rings, Advances in Algebra 1 (1) (2008) 19–26.
  • L. Oukhtite, S. Salhi, On commutativity of σ-prime rings, Glasnik Matematicki Series III 41 (61) (2006) 57–64.
  • N. U. Rehman, R. M. Al-Omary, A. Z. Ansari, On Lie ideals of ∗-prime rings with generalized derivations, Boletin de la Sociedad Matematica Mexicana 21 (2015) 19–26.
  • N. H. McCoy, The theory of rings, The Macmillan & Co LTD., New York, 1964.
  • M. Ashraf, S. Ali, On left multipliers and commutativity of prime rings, Demonstratio Mathematica 4 (41) (2008) 764–771.
  • H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canadian Mathematical Bulletin 30 (1) (1987) 92–101.
  • L. Molna´r, On centralizers of an H*-algebra, Publicationes Mathematicae Debrecen 46 (1-2) (1995) 89–95.
  • E. C. Posner, Derivations in prime rings, Proceedings of the American Mathematical Society 8 (1957) 1093–1100.
  • J. Mayne, Centralizing automorphisms of prime rings, Canadian Mathematical Bulletin 19 (1976) 113–115.
  • N. Aydın, Ç. Demir, D. Karalarlıoğlu Camcı, The source of semiprimeness of rings, Communications of the Korean Mathematical Society 33 (4) (2018) 1083–1096.
  • D. Karalarlıoğlu Camcı, Source of semiprimeness and multiplicative (generalized) derivations in rings, Doctoral Dissertation, Çanakkale Onsekiz Mart University (2017) Çanakkale.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Didem Karalarlıoğlu Camcı 0000-0002-8413-3753

Didem Yeşil 0000-0003-0666-9410

Barış Albayrak 0000-0002-8255-4706

Project Number FBA-2019-2812
Publication Date October 29, 2024
Submission Date September 18, 2024
Acceptance Date October 23, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Karalarlıoğlu Camcı, D., Yeşil, D., & Albayrak, B. (2024). Source of semiprimeness of $\ast$-prime rings. Journal of Amasya University the Institute of Sciences and Technology, 5(1), 43-48. https://doi.org/10.54559/jauist.1552047
AMA Karalarlıoğlu Camcı D, Yeşil D, Albayrak B. Source of semiprimeness of $\ast$-prime rings. J. Amasya Univ. Inst. Sci. Technol. October 2024;5(1):43-48. doi:10.54559/jauist.1552047
Chicago Karalarlıoğlu Camcı, Didem, Didem Yeşil, and Barış Albayrak. “Source of Semiprimeness of $\ast$-Prime Rings”. Journal of Amasya University the Institute of Sciences and Technology 5, no. 1 (October 2024): 43-48. https://doi.org/10.54559/jauist.1552047.
EndNote Karalarlıoğlu Camcı D, Yeşil D, Albayrak B (October 1, 2024) Source of semiprimeness of $\ast$-prime rings. Journal of Amasya University the Institute of Sciences and Technology 5 1 43–48.
IEEE D. Karalarlıoğlu Camcı, D. Yeşil, and B. Albayrak, “Source of semiprimeness of $\ast$-prime rings”, J. Amasya Univ. Inst. Sci. Technol., vol. 5, no. 1, pp. 43–48, 2024, doi: 10.54559/jauist.1552047.
ISNAD Karalarlıoğlu Camcı, Didem et al. “Source of Semiprimeness of $\ast$-Prime Rings”. Journal of Amasya University the Institute of Sciences and Technology 5/1 (October 2024), 43-48. https://doi.org/10.54559/jauist.1552047.
JAMA Karalarlıoğlu Camcı D, Yeşil D, Albayrak B. Source of semiprimeness of $\ast$-prime rings. J. Amasya Univ. Inst. Sci. Technol. 2024;5:43–48.
MLA Karalarlıoğlu Camcı, Didem et al. “Source of Semiprimeness of $\ast$-Prime Rings”. Journal of Amasya University the Institute of Sciences and Technology, vol. 5, no. 1, 2024, pp. 43-48, doi:10.54559/jauist.1552047.
Vancouver Karalarlıoğlu Camcı D, Yeşil D, Albayrak B. Source of semiprimeness of $\ast$-prime rings. J. Amasya Univ. Inst. Sci. Technol. 2024;5(1):43-8.