BibTex RIS Kaynak Göster

Magnesium: Effect on ocular health as a calcium channel antagonist

Yıl 2013, , 244 - 251, 01.06.2013
https://doi.org/10.5799/ahinjs.01.2013.02.0277

Öz

Magnesium is the physiologic calcium channel blocker, involving in many different metabolic processes by main­taining cell membrane function, modulating smooth mus­cle contraction and influencing enzymatic activities. Mag­nesium has been shown to increase blood flow to tissues by modifying endothelial function via endothelin-1 (ET-1) and nitric Oxide (NO) pathways. Magnesium also exhib­its neuroprotective role by blocking N-methyl-D-aspartate (NMDA) receptor related calcium influx and by inhibiting the release of glutamate, hence protects the cell against oxidative stress and apoptosis. Both increase in blood flow and its neuroprotective effect make magnesium a good candidate for glaucoma studies. Magnesium has been shown to decrease oxidative stress and apoptosis in retinal tissue and to have retinal ganglion cell spar­ing effect. A series of studies has been conducted about magnesium could decrease insulin resistance in diabetic patients, ease glycemia control and prevent diabetic reti­nopathy. Magnesium is found to be critically important in maintaining normal ionic homeostasis of lens. Magnesium deficiency has been shown to cause increased lenticular oxidative stress and ionic imbalance in the lens so trigger cataractogenesis. J Clin Exp Invest 2013; 4 (2): 244-251

Kaynakça

  • Wester PO. Magnesium. Am J Clin Nutr 1987;45:1305- 1312.
  • Saris NEL, Mervaala E, Karppanen H. Magnesium; An update on physiological, clinical and analytical as- pects. Clin Chim Acta 2000;294:1-26.
  • Cowan JA. The biological chemistry of magnesium, 1st edn. New York: Wiley-VCH, 1995:5-7.
  • Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J 1984;108:188-193.
  • Levine BS, Coburn JW. Magnesium, the mimic antago- nist of calcium. N Engl J Med 1984;310:1253-1255.
  • Touyz RM. Role of magnesium in the pathogenesis of hypertension. Molecular Aspects of Medicine
  • Laurant P, Berthelot A. Endothelin-1-induced contrac- tion in isolated aortae from normotensive and DOCA- salt hypertensive rats: effect of magnesium. Br J Phar- macol 1996;119:1367-1374.
  • Berthon N, Laurant P, Hayoz D, et al. Magnesium sup- plementation and deoxycorticosterone acetate--salt hypertension: effect on arterial mechanical properties and on activity of endothelin-1. Can J Physiol Pharm 2002;80:553-561.
  • Haenni A, Johansson K, Lind L, Lithell H. Magne- sium infusion improves endothelium-dependent va- sodilation in the human forearm. Am J Hypertens 2002;15:10-15.
  • Yang ZW, Gebrewold A, Nowakowski M, et al. Mg(2+)- induced endothelium-dependent relaxation of blood vessels and blood pressure lowering: role of NO. Am J Physiol Regul Integr Comp Physiol 2000;278:628- 639.
  • Szabo C, Farago M, Dora E. Effect of small changes in extracellular magnesium concentration on the tone of feline mesenteric arteries: involvement of endothe- lium. Acta Physiol Hung 1992;79:295-303.
  • Barbagallo M, Dominquez LJ, Galioto A, et al. Oral magnesium supplementation improves vascular func- tion in elderly diabetic patients. Magnesium Research 2010;23:131-137.
  • Shechter M, Sharir M, Labrador MJ, et al. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 2000;102:2353-2358.
  • Teragawa H, Kato M, Yamagata T, et al. Magnesium causes nitric oxide independent coronary artery vaso- dilation in humans. Heart. 2001;86:212-216.
  • Pyne GJ, Cadoux-Hudson TA, Clark JF. Magne- sium protection against in vitro cerebral vasospasm after subarachnoid haemorrhage. Br J Neurosurg 2001;15:409-415.
  • Shear R, Leduc L, Rey E, Moutquin JM. Hypertension in pregnancy. New recommendations for manage- ment. Curr Hypert Reports 1999;1:529-539.
  • Chaudhary P, Ahmed F, Sharma SC. MK801-a neu- roprotectant in rat hypertensive eyes. Brain Res 1998;792:154-158.
  • Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low dose glutamate is toxic to retinal ganglion cells: toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996;37:1618-1624.
  • Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 1997;37:3483-3493.
  • Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in isch- emia and traumatic brain injury. Cell Mol Life Sci 2004;61:657-668.
  • Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol 1996;114:299-305.
  • Coyle JT, Puttfarcken P. Oxidative stress, gluta- mate, and neurodegenerative disorders. Science. 1993;262:689-695.
  • Gathwala G. Neuronal protection with magnesium. Indian J Pediatr 2001;68:417-419.
  • Hoffman DJ, Marro PJ, McGowan JE, Mishra OP, De- livoria-Papadopoulos M. Protective effect of Mg SO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxia in the newborn piglet. Brain Res 1994;644:144-149.
  • Ustun ME, Duman A, Ogun CO, et al. Effects of ni- modipine and magnesium sulfate on endogenous an- tioxidant levels in brain tissue after experimental head trauma. J Neurosurg Anesthesiol 2001;13:227-232.
  • Veyna RS, Seyfried D, Burke DG, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hem- orrhage. J Neurosurg 2002;96:510-514.
  • Altura BT, Memon ZI, Zhang A, et al. Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neurosci Lett 1997;230:37-40.
  • Gong H, Amemiya T, Takaya K. Retinal changes in magnesium deficient rats. Exp Eye Res 2001;72:23- 32.
  • Szabo ME, Droy LM, Doly M, Braquet P. Ischaemia- and reperfusion-induced Na+, K+, Ca2+ and Mg2+ shifts in rat retina: effects of two free radical scavengers, SOD and EGB 761. Exp Eye Res 1992;55;39-45.
  • Katsanos KH, Elisaf M, Bairaktari E, Tsianos EV. Se- vere hypomagnesemia and hypoparathyroidism in Kearns-Sayre syndrome. Am J Nephrol 2001;21:150- 153.
  • Liang SY, Lee LR. Retinitis pigmentosa associated with hypomagnesaemia. Clin Experiment Ophthalmol 2010;38:645-647.
  • Somlyo AP, Walz B. Elemental distribution in Rana pipiens retinal rods: quantitative electron probe analy- sis. J Psychol 1985;358:183-195.
  • Dizhoor AM, Olshevskaya EV, Peshenko IV. Mg2+/ Ca2+ cation binding cycle of guanylyl cyclase activat- ing proteins (GCAPs): role in regulation of photorecep- tor guanylyl cyclase. Mol Cell Biochem 2010;334:117- 124.
  • Peshenko IV, Dizhoor AM. Guanylyl cyclase-activat- ing proteins (GCAPs) are Ca2+/Mg2+ sensors: impli- cations for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem 2004;279:16903-16906.
  • Caddell JL. Hypothesis: The possible role of magne- sium and copper deficiency in retinopathy of prematu- rity. Magnes Res 1995;8:261-270.
  • Gong H, Takayi K, Amemiya T. Ultrastructure of the optic nerve in magnesium-deficient rats. Ophthalmic Res 2003;35:84–92.
  • Gong H, Takami Y, Takaya K, Amemiya T. Cor- neal changes in magnesium-deficient rats. Cornea
  • Parc CE, Johnson DH, Oliver JE, et al. The long-term outcome of glaucoma filtration surgery. Am J Ophthal- mol 2001;132:27-35.
  • Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002;21:359-393.
  • Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glauco- ma? Surv Ophthalmol 2007;52:S144-S154.
  • Flammer J, Haefliger IO, Orgül S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 1999;8:212-219.
  • Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001;20:319-349.
  • Kaiser HJ, Flammer J, Wenk M, Lüscher T. Endothe- lin-1 plasma levels in normal-tension glaucoma: ab- normal response to postural changes. Graefes Arch Clin Exp Ophthalmol 1995;233:484-488.
  • Sugiyama T, Moriya S, Oku H, Azuma I. Associa- tion of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol 1995;39:49–56.
  • Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma 2002;11:259-270.
  • Emre M, Orgul S, Haufschild T, et al. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 2005;89:60-63.
  • Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994;46:325-415.
  • Orgül S, Cioffi GA, Wilson DJ, et al. An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest ophthalmol Vis Sci 1996;37:1860-1869.
  • Meyer P, Lang MG, Flammer J, Lüscher TF. Effects of calcium channel blockers on the response to endothe- lin-1, bradykinin and sodium nitroprusside in porcine ciliary arteries. Exp Eye Res. 1995;60:505-510.
  • Toriu N, Sasaoka M, Shimazawa M, et al. Effects of Iomerizine, a novel Ca2+ channel blocker, on the normal and endothelin-1-disturbed circulation in the optic nerve head of rabbits. J Ocul Pharmacol Ther 2001;17:131-149.
  • Ciulla TA, Pawlyk BS, Harris A, et al. Endothelin-1-me- diated retinal artery vasospasm and the rabbit electro- retinogram. J Ocul Pharmacol Ther 2000;16:393-398.
  • Nyborg NC, Prieto D, Benedito S, Nielsen PJ. Endo- thelin-1-induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine. Invest Ophthalmol Vis Sci 1991;32:27-31.
  • Cellini M, Possati GL, Caramazza N, et al. The use of flunarizine in the management of low-tension glau- coma: a color Doppler study. Acta Ophthalmol Scand 1997;224:57-58
  • Boehm AG, Breidenbach KA, Pillunat LE, et al. Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel block- ers. Graefes Arch Clin Exp Ophthalmol 2003;241:34- 38.
  • DeWitt CR, Waksman JC. Pharmacology, pathophys- iology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev 2004;23:223- 238.
  • Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 995;209:11-13.
  • Aydın B, Önol M, Hondur A, et al. The effect of oral magnesium therapy on visual field and ocular blood flow in normotensive glaucoma. European J Ophthal- mol 2010;20:131-135
  • Dettmann ES, Luscher TF, Flammer J, Haefliger IO. Modulation of endothelin 1-induced contractions by magnesium/calcium in porcine ciliary arteries. Grae- fes Arch Clin Exp Ophthalmol 1998;236:47-51.
  • Neufeld AH, Hernandez MR, Gonzalez M. Nitric ox- ide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997;115:497-503.
  • Shareef S, Sawada A, Neufeld AH. Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. In- vest Ophthalmol Vis Sci 1999;40:2884-2891.
  • Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 1999;18:765-810.
  • Sucher NJ, Lei SZ, Lipton SA. Calcium channel an- tagonists attenuate NMDA receptor-mediated neuro- toxicity of retinal ganglion cells in culture. Brain Res
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-de- pendent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261-263.
  • Mori H, Masaki H, Yamakura T, Mishina M. Identifica- tion by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 1992;358:673-675.
  • Burnashev N, Schoepfer R, Monyer H, et al. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 1992;257:1415-1419.
  • Regan RF, Jasper E, Guo Y, Panter SS. The effect of magnesium on oxidative neuronal injury in vitro. J Neurochem 1998;70:77-85.
  • Regan RF, Guo Y. Magnesium deprivation decreases cellular reduced glutathione and causes oxidative neuronal death in murine cortical cultures. Brain Res 2001;890:177-183.
  • Mills BJ, Lindeman RD, Lang CA. Magnesium de- ficiency inhibits biosynthesis of blood glutathione and tumor growth in the rat. Proc Soc Exp Biol Med 1986;181:326-332.
  • Freedman AM, Mak IT, Stafford RE, et al. Erythro- cytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 1992;262:C1371-375.
  • Tezel G. Oxidative stress in glaucomatous neurode- generation: mechanisms and consequences. Prog Retin Eye Res 2006;25:490-513.
  • Humphries S, Kushner H, Falkner B. Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. Am J Hypertens 1999;12:747–576.
  • Huerta GM, Roemmich JN, Kington ML, et al. Magne- sium deficiency is associated with insulin resistance in obese children. Diabetes Care 2005;28:175-181.
  • Kao WH, Folsom AR, Nieto FJ, et al. Serum and di- etary magnesium and the risk for type 2 diabetes mel- litus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 1999;159:2151-2159.
  • Sjögren A, Florén C-H, Nilsson A. Magnesium, potas- sium and zinc deficiency in subjects with type II diabe- tes mellitus. Acta Med Scand 1988;224:461-465.
  • Sjögren A, Florén C-H, Nilsson A. Magnesium defi- ciency in IDDM related to level of glycosylated hemo- globin. Diabetes 1986;35:459-463.
  • Hatwal A, Gujral AS, Bhatia RP, et al. Association of hypomagnesemia with diabetic retinopathy. Acta Oph- thalmol (Copenh) 1989;67:714-716.
  • Sharma A, Dabla S, Agrawal RP, et al. Serum mag- nesium: an early predictor of course and compli- cations of diabetes mellitus. J Indian Med Assoc 2007;105:16,18,20.
  • Draznin B. Cytosolic calcium and insulin resistance. Am J Kidney Dis1993;21(suppl):32-38.
  • Draznin B, Sussman K, Echel RH, et al. Possible role of cytosolic free Ca concentrations in mediating insu- lin resistance of obesity and hyperinsulinemia. J Clin Invest 1988;82:1848-1852.
  • Paolisso G, Scheen A, D’Onofrio F, Lefèbvre P. Magnesium and glucose homeostasis. Diabetologia 1990;33:511-514.
  • Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin action, diabetes and cardio-met- abolic syndrome X. Mol Aspects Med 2003;24:39–52.
  • Barbagallo M, Dominguez LJ. Magnesium me- tabolism in type 2 diabetes mellitus, metabolic syn- drome and insulin resistance. Arch Biochem Biophy 2007;458:40-47.
  • Takaya J, Higashino H, Kobayyashi Y. Intracellu- lar magnesium and insulin resistance. Magnes Res 2004;17:126-136.
  • Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A. Impaired tyrosine kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabe- tologia 1995;38:1262-1270.
  • McNair P, Christiansen C, Madsbad S, et al. Hypo- magnesemia, a risk factor in diabetic retinopathy. Dia- betes 1978;27:1075-1077.
  • Ceriello A, Giugliano D, Dello Russo P, Passariello N. Hypomagnesemia in relation to diabetic retinopathy. Diabetes Care 1982;5:558-559.
  • de Valk HW, Hardus PL, van Rijn HJ, Erkelens DW. Plasma magnesium concentration and progression of retinopathy [letter]. Diabetes Care. 1999;22:864-865.
  • Lee CT, Gayton EL, Beulens JW, Flanagan DW, Adler AI. Micronutrients and diabetic retinopathy: a system- atic review. Ophthalmology 2010;117:71-78.
  • Erasmus RT, Olukoga AO, Alanamu RA, Adewoye HO, Bojuwoye B. Plasma magnesium and reti- nopathy in black African diabetics. Trop Geogr Med 1989;41:234-237.
  • Walter RM, Uriu-Hare JY, Olin KL, et al. Copper, zinc, manganese, and magnesium status and complica- tions of diabetes mellitus. Diabetes Care 199;14:1050- 1056.
  • Agarwal R, Iezhitsa I, Agarwal P, Spasov A. Magne- sium deficiency: does it have a role to play in catarac- togenesis? Exp Eye Res 2012;101:82-89.
  • Dilsiz N, Olcucu A, Atas M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct
  • Nagai N, Ito Y, Inomata M, et al. Delay of cataract de- velopment in the Shumiya cataract rat by the adminis- tration of drinking water containing high concentration of magnesium ion. Biol Pharm Bull 2006;29:1234- 1238.
  • Nagai N, Ito Y. Delay of cataract development in the Shumiya cataract rat by water containing enhanced concentrations of magnesium and calcium. Curr Eye Res 2007;32:439-445.
  • Ito Y, Nabekura T, Takeda M, et al. Nitric oxide partici- pates in cataract development in selenite-treated rats. Curr Eye Res 2001;22:215-20.
  • Nagai N, Fukuhata T, Ito Y. Effect of magnesium de- ficiency on intracellular ATP levels in human lens epi- thelial cells. Biol Pharm Bull 2007;30:6-10.
  • Agarwal R, Iezhitsa I, Awaludin NA, et al. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: In vivo and in vitro evaluation. Exp Eye Res 2013;18. pii: S0014-4835:00047-X.

Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri

Yıl 2013, , 244 - 251, 01.06.2013
https://doi.org/10.5799/ahinjs.01.2013.02.0277

Öz

Magnezyum hücre zar fonksiyonlarını, düz kas kontrak­siyonlarını ve enzimatik reaksiyonları etkileyerek pek çok metabolik sürece katılan fizyolojik bir kalsiyum kanal blokörüdür. Magnezyumun Endothelin-1 (ET-1) ve Nitrik Oksit (NO) yolakları vasıtasıyla endotel fonksiyonları­nı modifiye ederek dokulara kan akımında artışa neden olduğu gösterilmiştir. Magnezyum aynı zamanda N-me­til-D-aspartat (NMDA) reseptör ilişkili kalsiyum içe akımı­nı bloke ederek ve glutamat serbestleşmesini önleyerek nöroprotektif rol oynamakta ve hücreleri oksidatif stres ve apoptoza karşı korumaktadır. Hem kan akımında artışa neden olması hem de nöroprotektif etkileri magnezyumu glokom çalışmaları için iyi bir hedef molekül yapmaktadır. Magnezyumun retinada oksidatif stresi ve apoptozu azalt­tığı ve ganglion koruyucu etkileri olduğu gösterilmiştir. Bir takım çalışmalarda aynı zamanda magnezyumun diabe­tik hastalarda insulin resistansını azalttığı, glisemik kont­rolü kolaylaştırdığı ve retinopatiyi önlediği gösterilmiştir. Magnezyumun lensteki iyon dengesinin sağlanmasında kritik önemi belirlenmiştir. Magnezyum eksikliğinin lenti­küler oksidatif stresi arttırdığı ve iyon dengesini bozarak katarakt oluşumuna neden olduğu gösterilmiştir.

Kaynakça

  • Wester PO. Magnesium. Am J Clin Nutr 1987;45:1305- 1312.
  • Saris NEL, Mervaala E, Karppanen H. Magnesium; An update on physiological, clinical and analytical as- pects. Clin Chim Acta 2000;294:1-26.
  • Cowan JA. The biological chemistry of magnesium, 1st edn. New York: Wiley-VCH, 1995:5-7.
  • Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J 1984;108:188-193.
  • Levine BS, Coburn JW. Magnesium, the mimic antago- nist of calcium. N Engl J Med 1984;310:1253-1255.
  • Touyz RM. Role of magnesium in the pathogenesis of hypertension. Molecular Aspects of Medicine
  • Laurant P, Berthelot A. Endothelin-1-induced contrac- tion in isolated aortae from normotensive and DOCA- salt hypertensive rats: effect of magnesium. Br J Phar- macol 1996;119:1367-1374.
  • Berthon N, Laurant P, Hayoz D, et al. Magnesium sup- plementation and deoxycorticosterone acetate--salt hypertension: effect on arterial mechanical properties and on activity of endothelin-1. Can J Physiol Pharm 2002;80:553-561.
  • Haenni A, Johansson K, Lind L, Lithell H. Magne- sium infusion improves endothelium-dependent va- sodilation in the human forearm. Am J Hypertens 2002;15:10-15.
  • Yang ZW, Gebrewold A, Nowakowski M, et al. Mg(2+)- induced endothelium-dependent relaxation of blood vessels and blood pressure lowering: role of NO. Am J Physiol Regul Integr Comp Physiol 2000;278:628- 639.
  • Szabo C, Farago M, Dora E. Effect of small changes in extracellular magnesium concentration on the tone of feline mesenteric arteries: involvement of endothe- lium. Acta Physiol Hung 1992;79:295-303.
  • Barbagallo M, Dominquez LJ, Galioto A, et al. Oral magnesium supplementation improves vascular func- tion in elderly diabetic patients. Magnesium Research 2010;23:131-137.
  • Shechter M, Sharir M, Labrador MJ, et al. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 2000;102:2353-2358.
  • Teragawa H, Kato M, Yamagata T, et al. Magnesium causes nitric oxide independent coronary artery vaso- dilation in humans. Heart. 2001;86:212-216.
  • Pyne GJ, Cadoux-Hudson TA, Clark JF. Magne- sium protection against in vitro cerebral vasospasm after subarachnoid haemorrhage. Br J Neurosurg 2001;15:409-415.
  • Shear R, Leduc L, Rey E, Moutquin JM. Hypertension in pregnancy. New recommendations for manage- ment. Curr Hypert Reports 1999;1:529-539.
  • Chaudhary P, Ahmed F, Sharma SC. MK801-a neu- roprotectant in rat hypertensive eyes. Brain Res 1998;792:154-158.
  • Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low dose glutamate is toxic to retinal ganglion cells: toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996;37:1618-1624.
  • Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 1997;37:3483-3493.
  • Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in isch- emia and traumatic brain injury. Cell Mol Life Sci 2004;61:657-668.
  • Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol 1996;114:299-305.
  • Coyle JT, Puttfarcken P. Oxidative stress, gluta- mate, and neurodegenerative disorders. Science. 1993;262:689-695.
  • Gathwala G. Neuronal protection with magnesium. Indian J Pediatr 2001;68:417-419.
  • Hoffman DJ, Marro PJ, McGowan JE, Mishra OP, De- livoria-Papadopoulos M. Protective effect of Mg SO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxia in the newborn piglet. Brain Res 1994;644:144-149.
  • Ustun ME, Duman A, Ogun CO, et al. Effects of ni- modipine and magnesium sulfate on endogenous an- tioxidant levels in brain tissue after experimental head trauma. J Neurosurg Anesthesiol 2001;13:227-232.
  • Veyna RS, Seyfried D, Burke DG, et al. Magnesium sulfate therapy after aneurysmal subarachnoid hem- orrhage. J Neurosurg 2002;96:510-514.
  • Altura BT, Memon ZI, Zhang A, et al. Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neurosci Lett 1997;230:37-40.
  • Gong H, Amemiya T, Takaya K. Retinal changes in magnesium deficient rats. Exp Eye Res 2001;72:23- 32.
  • Szabo ME, Droy LM, Doly M, Braquet P. Ischaemia- and reperfusion-induced Na+, K+, Ca2+ and Mg2+ shifts in rat retina: effects of two free radical scavengers, SOD and EGB 761. Exp Eye Res 1992;55;39-45.
  • Katsanos KH, Elisaf M, Bairaktari E, Tsianos EV. Se- vere hypomagnesemia and hypoparathyroidism in Kearns-Sayre syndrome. Am J Nephrol 2001;21:150- 153.
  • Liang SY, Lee LR. Retinitis pigmentosa associated with hypomagnesaemia. Clin Experiment Ophthalmol 2010;38:645-647.
  • Somlyo AP, Walz B. Elemental distribution in Rana pipiens retinal rods: quantitative electron probe analy- sis. J Psychol 1985;358:183-195.
  • Dizhoor AM, Olshevskaya EV, Peshenko IV. Mg2+/ Ca2+ cation binding cycle of guanylyl cyclase activat- ing proteins (GCAPs): role in regulation of photorecep- tor guanylyl cyclase. Mol Cell Biochem 2010;334:117- 124.
  • Peshenko IV, Dizhoor AM. Guanylyl cyclase-activat- ing proteins (GCAPs) are Ca2+/Mg2+ sensors: impli- cations for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem 2004;279:16903-16906.
  • Caddell JL. Hypothesis: The possible role of magne- sium and copper deficiency in retinopathy of prematu- rity. Magnes Res 1995;8:261-270.
  • Gong H, Takayi K, Amemiya T. Ultrastructure of the optic nerve in magnesium-deficient rats. Ophthalmic Res 2003;35:84–92.
  • Gong H, Takami Y, Takaya K, Amemiya T. Cor- neal changes in magnesium-deficient rats. Cornea
  • Parc CE, Johnson DH, Oliver JE, et al. The long-term outcome of glaucoma filtration surgery. Am J Ophthal- mol 2001;132:27-35.
  • Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002;21:359-393.
  • Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glauco- ma? Surv Ophthalmol 2007;52:S144-S154.
  • Flammer J, Haefliger IO, Orgül S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 1999;8:212-219.
  • Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001;20:319-349.
  • Kaiser HJ, Flammer J, Wenk M, Lüscher T. Endothe- lin-1 plasma levels in normal-tension glaucoma: ab- normal response to postural changes. Graefes Arch Clin Exp Ophthalmol 1995;233:484-488.
  • Sugiyama T, Moriya S, Oku H, Azuma I. Associa- tion of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol 1995;39:49–56.
  • Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma 2002;11:259-270.
  • Emre M, Orgul S, Haufschild T, et al. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 2005;89:60-63.
  • Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994;46:325-415.
  • Orgül S, Cioffi GA, Wilson DJ, et al. An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest ophthalmol Vis Sci 1996;37:1860-1869.
  • Meyer P, Lang MG, Flammer J, Lüscher TF. Effects of calcium channel blockers on the response to endothe- lin-1, bradykinin and sodium nitroprusside in porcine ciliary arteries. Exp Eye Res. 1995;60:505-510.
  • Toriu N, Sasaoka M, Shimazawa M, et al. Effects of Iomerizine, a novel Ca2+ channel blocker, on the normal and endothelin-1-disturbed circulation in the optic nerve head of rabbits. J Ocul Pharmacol Ther 2001;17:131-149.
  • Ciulla TA, Pawlyk BS, Harris A, et al. Endothelin-1-me- diated retinal artery vasospasm and the rabbit electro- retinogram. J Ocul Pharmacol Ther 2000;16:393-398.
  • Nyborg NC, Prieto D, Benedito S, Nielsen PJ. Endo- thelin-1-induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine. Invest Ophthalmol Vis Sci 1991;32:27-31.
  • Cellini M, Possati GL, Caramazza N, et al. The use of flunarizine in the management of low-tension glau- coma: a color Doppler study. Acta Ophthalmol Scand 1997;224:57-58
  • Boehm AG, Breidenbach KA, Pillunat LE, et al. Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel block- ers. Graefes Arch Clin Exp Ophthalmol 2003;241:34- 38.
  • DeWitt CR, Waksman JC. Pharmacology, pathophys- iology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev 2004;23:223- 238.
  • Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 995;209:11-13.
  • Aydın B, Önol M, Hondur A, et al. The effect of oral magnesium therapy on visual field and ocular blood flow in normotensive glaucoma. European J Ophthal- mol 2010;20:131-135
  • Dettmann ES, Luscher TF, Flammer J, Haefliger IO. Modulation of endothelin 1-induced contractions by magnesium/calcium in porcine ciliary arteries. Grae- fes Arch Clin Exp Ophthalmol 1998;236:47-51.
  • Neufeld AH, Hernandez MR, Gonzalez M. Nitric ox- ide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 1997;115:497-503.
  • Shareef S, Sawada A, Neufeld AH. Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. In- vest Ophthalmol Vis Sci 1999;40:2884-2891.
  • Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 1999;18:765-810.
  • Sucher NJ, Lei SZ, Lipton SA. Calcium channel an- tagonists attenuate NMDA receptor-mediated neuro- toxicity of retinal ganglion cells in culture. Brain Res
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-de- pendent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261-263.
  • Mori H, Masaki H, Yamakura T, Mishina M. Identifica- tion by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 1992;358:673-675.
  • Burnashev N, Schoepfer R, Monyer H, et al. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 1992;257:1415-1419.
  • Regan RF, Jasper E, Guo Y, Panter SS. The effect of magnesium on oxidative neuronal injury in vitro. J Neurochem 1998;70:77-85.
  • Regan RF, Guo Y. Magnesium deprivation decreases cellular reduced glutathione and causes oxidative neuronal death in murine cortical cultures. Brain Res 2001;890:177-183.
  • Mills BJ, Lindeman RD, Lang CA. Magnesium de- ficiency inhibits biosynthesis of blood glutathione and tumor growth in the rat. Proc Soc Exp Biol Med 1986;181:326-332.
  • Freedman AM, Mak IT, Stafford RE, et al. Erythro- cytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol 1992;262:C1371-375.
  • Tezel G. Oxidative stress in glaucomatous neurode- generation: mechanisms and consequences. Prog Retin Eye Res 2006;25:490-513.
  • Humphries S, Kushner H, Falkner B. Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. Am J Hypertens 1999;12:747–576.
  • Huerta GM, Roemmich JN, Kington ML, et al. Magne- sium deficiency is associated with insulin resistance in obese children. Diabetes Care 2005;28:175-181.
  • Kao WH, Folsom AR, Nieto FJ, et al. Serum and di- etary magnesium and the risk for type 2 diabetes mel- litus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 1999;159:2151-2159.
  • Sjögren A, Florén C-H, Nilsson A. Magnesium, potas- sium and zinc deficiency in subjects with type II diabe- tes mellitus. Acta Med Scand 1988;224:461-465.
  • Sjögren A, Florén C-H, Nilsson A. Magnesium defi- ciency in IDDM related to level of glycosylated hemo- globin. Diabetes 1986;35:459-463.
  • Hatwal A, Gujral AS, Bhatia RP, et al. Association of hypomagnesemia with diabetic retinopathy. Acta Oph- thalmol (Copenh) 1989;67:714-716.
  • Sharma A, Dabla S, Agrawal RP, et al. Serum mag- nesium: an early predictor of course and compli- cations of diabetes mellitus. J Indian Med Assoc 2007;105:16,18,20.
  • Draznin B. Cytosolic calcium and insulin resistance. Am J Kidney Dis1993;21(suppl):32-38.
  • Draznin B, Sussman K, Echel RH, et al. Possible role of cytosolic free Ca concentrations in mediating insu- lin resistance of obesity and hyperinsulinemia. J Clin Invest 1988;82:1848-1852.
  • Paolisso G, Scheen A, D’Onofrio F, Lefèbvre P. Magnesium and glucose homeostasis. Diabetologia 1990;33:511-514.
  • Barbagallo M, Dominguez LJ, Galioto A, et al. Role of magnesium in insulin action, diabetes and cardio-met- abolic syndrome X. Mol Aspects Med 2003;24:39–52.
  • Barbagallo M, Dominguez LJ. Magnesium me- tabolism in type 2 diabetes mellitus, metabolic syn- drome and insulin resistance. Arch Biochem Biophy 2007;458:40-47.
  • Takaya J, Higashino H, Kobayyashi Y. Intracellu- lar magnesium and insulin resistance. Magnes Res 2004;17:126-136.
  • Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A. Impaired tyrosine kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabe- tologia 1995;38:1262-1270.
  • McNair P, Christiansen C, Madsbad S, et al. Hypo- magnesemia, a risk factor in diabetic retinopathy. Dia- betes 1978;27:1075-1077.
  • Ceriello A, Giugliano D, Dello Russo P, Passariello N. Hypomagnesemia in relation to diabetic retinopathy. Diabetes Care 1982;5:558-559.
  • de Valk HW, Hardus PL, van Rijn HJ, Erkelens DW. Plasma magnesium concentration and progression of retinopathy [letter]. Diabetes Care. 1999;22:864-865.
  • Lee CT, Gayton EL, Beulens JW, Flanagan DW, Adler AI. Micronutrients and diabetic retinopathy: a system- atic review. Ophthalmology 2010;117:71-78.
  • Erasmus RT, Olukoga AO, Alanamu RA, Adewoye HO, Bojuwoye B. Plasma magnesium and reti- nopathy in black African diabetics. Trop Geogr Med 1989;41:234-237.
  • Walter RM, Uriu-Hare JY, Olin KL, et al. Copper, zinc, manganese, and magnesium status and complica- tions of diabetes mellitus. Diabetes Care 199;14:1050- 1056.
  • Agarwal R, Iezhitsa I, Agarwal P, Spasov A. Magne- sium deficiency: does it have a role to play in catarac- togenesis? Exp Eye Res 2012;101:82-89.
  • Dilsiz N, Olcucu A, Atas M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct
  • Nagai N, Ito Y, Inomata M, et al. Delay of cataract de- velopment in the Shumiya cataract rat by the adminis- tration of drinking water containing high concentration of magnesium ion. Biol Pharm Bull 2006;29:1234- 1238.
  • Nagai N, Ito Y. Delay of cataract development in the Shumiya cataract rat by water containing enhanced concentrations of magnesium and calcium. Curr Eye Res 2007;32:439-445.
  • Ito Y, Nabekura T, Takeda M, et al. Nitric oxide partici- pates in cataract development in selenite-treated rats. Curr Eye Res 2001;22:215-20.
  • Nagai N, Fukuhata T, Ito Y. Effect of magnesium de- ficiency on intracellular ATP levels in human lens epi- thelial cells. Biol Pharm Bull 2007;30:6-10.
  • Agarwal R, Iezhitsa I, Awaludin NA, et al. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: In vivo and in vitro evaluation. Exp Eye Res 2013;18. pii: S0014-4835:00047-X.
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Şafak Korkmaz Bu kişi benim

Feyzahan Ekici Bu kişi benim

Hasan Ali Tufan Bu kişi benim

Bahri Aydın Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2013
Yayımlandığı Sayı Yıl 2013

Kaynak Göster

APA Korkmaz, Ş., Ekici, F., Tufan, H. A., Aydın, B. (2013). Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri. Journal of Clinical and Experimental Investigations, 4(2), 244-251. https://doi.org/10.5799/ahinjs.01.2013.02.0277
AMA Korkmaz Ş, Ekici F, Tufan HA, Aydın B. Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri. J Clin Exp Invest. Haziran 2013;4(2):244-251. doi:10.5799/ahinjs.01.2013.02.0277
Chicago Korkmaz, Şafak, Feyzahan Ekici, Hasan Ali Tufan, ve Bahri Aydın. “Magnezyum: Kalsiyum Kanal Antagonisti Olarak göz sağlığı üzerindeki Etkileri”. Journal of Clinical and Experimental Investigations 4, sy. 2 (Haziran 2013): 244-51. https://doi.org/10.5799/ahinjs.01.2013.02.0277.
EndNote Korkmaz Ş, Ekici F, Tufan HA, Aydın B (01 Haziran 2013) Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri. Journal of Clinical and Experimental Investigations 4 2 244–251.
IEEE Ş. Korkmaz, F. Ekici, H. A. Tufan, ve B. Aydın, “Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri”, J Clin Exp Invest, c. 4, sy. 2, ss. 244–251, 2013, doi: 10.5799/ahinjs.01.2013.02.0277.
ISNAD Korkmaz, Şafak vd. “Magnezyum: Kalsiyum Kanal Antagonisti Olarak göz sağlığı üzerindeki Etkileri”. Journal of Clinical and Experimental Investigations 4/2 (Haziran 2013), 244-251. https://doi.org/10.5799/ahinjs.01.2013.02.0277.
JAMA Korkmaz Ş, Ekici F, Tufan HA, Aydın B. Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri. J Clin Exp Invest. 2013;4:244–251.
MLA Korkmaz, Şafak vd. “Magnezyum: Kalsiyum Kanal Antagonisti Olarak göz sağlığı üzerindeki Etkileri”. Journal of Clinical and Experimental Investigations, c. 4, sy. 2, 2013, ss. 244-51, doi:10.5799/ahinjs.01.2013.02.0277.
Vancouver Korkmaz Ş, Ekici F, Tufan HA, Aydın B. Magnezyum: Kalsiyum kanal antagonisti olarak göz sağlığı üzerindeki etkileri. J Clin Exp Invest. 2013;4(2):244-51.