Araştırma Makalesi
BibTex RIS Kaynak Göster

Malzeme İnovasyonu ve Ekolojik Zekâya Sahip Mimarlık için Kod Tabanlı Bakteriyel Selüloz Büyüme Simülasyonu

Yıl 2025, Cilt: 6 Sayı: 2, 235 - 254, 30.09.2025
https://doi.org/10.53710/jcode.1618503

Öz

Bakteriyel selüloz, kendini organize eden lif ağlarıyla, biyomimetik ve sürdürülebilir malzeme tasarımı için umut vadeden bir model sunmaktadır. Bu çalışma, bakteriyel selüloz lif ağlarının büyümesini, difüzyon sınırlı birikim (DLA) algoritması kullanarak hesaplamalı olarak araştırmakta ve bu doğal desenlerin ekolojik ve rejeneratif tasarım uygulamalarına nasıl ilham verebileceğini anlamayı amaçlamaktadır. Bu ağların oluşumunun simüle edilmesiyle, DLA algoritmasının bakteriyel selülozun büyüme sürecinde var olan karmaşıklığı ve uyarlanabilirliği taklit etme potansiyeli incelenmiştir. Sonuçlar, DLA’nın yalnızca bakteriyel selülozun yapısal organizasyonunu taklit etmekle kalmadığını, aynı zamanda malzeme özelliklerini ekolojik uygulamalar için optimize etmeye yönelik yeni içgörüler sunduğunu göstermektedir. Kod tabanlı bu hesaplamalı yaklaşım aracılığıyla, bu araştırma tasarımda ekolojik zekâya yönelik çalışmalara katkıda bulunmayı hedeflemekte ve sürdürülebilirlik ve dayanıklılığı teşvik eden biyomimetik malzemelerin geliştirilmesi için bir çerçeve sunmaktadır. Araştırma, mikrobiyal süreçler ile hesaplamalı tasarımı bir araya getirerek, malzeme inovasyonu ve rejeneratif mimarlıkta ekolojik zekânın uygulanmasını ileriye taşımaktadır.

Kaynakça

  • Chunyan, Z. (2020). Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 8, 605374. https://doi.org/10.3389/fbioe.2020.605374
  • Dayal, M. S., & Catchmark, J. M. (2016). Mechanical and structural property analysis of bacterial cellulose composites. Carbohydrate polymers, 144, 447-453. https://doi.org/10.1016/j.carbpol.2016.02.055
  • Derme, T., Mitterberger, D., & Di Tanna, U. (2016). Growth based fabrication techniques for bacterial cellulose. In ACADIA 2016: Posthuman frontiers: data, designers, and cognitive machines, 488-495.
  • Durrett, R. (1984). Brownian motion and martingales in analysis. Wadsworth, Belmont CA.
  • El Gazzar, N. T., Estévez, A. T., & Abdallah, Y. K. (2021). Bacterial Cellulose As A Base Material In Biodigital Architecture. Journal of Green Building, 16(2), 173-199. https://doi.org/10.3992/jgb.16.2.173
  • Gazit, M. (2016). “Living matter: biomaterials for design and architecture”, Doctoral dissertation, Massachusetts Institute of Technology.
  • Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623. https://doi.org/10.1016/j.mser.2021.100623
  • Hornung, M., Biener, R. and Schmauder, H.-P. (2009), Dynamic modelling of bacterial cellulose formation. Eng. Life Sci., 9: 342-347. https://doi.org/10.1002/elsc.200900038
  • Jin, K., Jin, C., & Wu, Y. (2022). Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers, 283, 119171.
  • Knott, B. C., Crowley, M. F., Himmel, M. E., Zimmer, J., & Beckham, G. T. (2016). Simulations of cellulose translocation in the bacterial cellulose suggest a regulatory mechanism for the dimeric structure of cellulose. Chemical Science, 7(5), 3108-3116. https://doi.org/10.1039/C5SC04558D
  • Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Biotechnology for Fuels and Chemicals, 763-774. https://doi.org/10.1007/978-1-60327-526-2_70
  • Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., ... & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. https://dx.doi.org/10.1016/j.tifs.2021.04.016
  • Papageorgakopoulou, H., & Maier, W. J. (1984). A new modeling technique and computer simulation of bacterial growth. Biotechnology and bioengineering, 26(3), 275-284. https://doi.org/10.1002/bit.260260313
  • Rincón, A., Hoyos, F. E., & Candelo-Becerra, J. E. (2024). Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics. Computation, (12)12, 239. https://doi.org/10.3389/fbioe.2020.605374
  • Shrivastav, P., Pramanik, S., Vaidya, G., Abdelgawad, M. A., Ghoneim, M. M., Singh, A., ... & Abourehab, M. A. (2022). Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. Journal of Materials Chemistry B, 10(17), 3199-3241. https://doi.org/10.1039/D1TB02709C
  • Steiner, F., Simmons, M., Gallagher, M., Ranganathan, J., & Robertson, C. (2013). The ecological imperative for environmental design and planning. Frontiers in Ecology and the Environment, 11(7), 355-361. https://doi.org/10.1890/130052
  • Turhan, G. D., Afsar, S., Ozel, B., Doyuran, A., Varinlioglu, G. and Bengisu, M. (2022) 3D Printing with Bacterial Cellulose-Based Bioactive Composites for Design Applications. In Proceedings of the eCAADe 2022: Co-creating the Future - Inclusion in and through Design, 1, 77- 84. https://doi.org/10.52842/conf.ecaade.2022.1.077
  • Turhan, G. D., Varinlioglu, G. and Bengisu, M. (2023). Bio-based material integration into computational form finding tools by introducing tensile properties in the case of bacterial cellulose-based composites. International Journal of Architectural Computing 21 (4), 781-794.
  • Witten, T. A. Jr. & Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters 47, 1400–1403. https://doi.org/10.1103/PhysRevLett.47.1400
  • Wu, Z., Chen, S., Li, J., Wang, B., Jin, M., Liang, Q., ... & Wang, H. (2023). Insights into hierarchical structure–property–application relationships of advanced bacterial cellulose materials. Advanced Functional Materials, 33(12), 2214327. https://doi.org/10.1002/adfm.202214327
  • Yazıcı, S & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543. https://doi.org/10.1016/j.jobe.2020.101543

Code-driven Simulation of Bacterial Cellulose Growth for Material Innovation and Eco-intelligent Architecture

Yıl 2025, Cilt: 6 Sayı: 2, 235 - 254, 30.09.2025
https://doi.org/10.53710/jcode.1618503

Öz

Bacterial cellulose, with its self-organizing fiber networks, offers a promising model for bio-inspired, sustainable material design. This study explores the computational growth of bacterial cellulose fiber networks using the diffusion-limited aggregation (DLA) algorithm, aiming to decode how these natural patterns can inform ecological and regenerative design practices. By simulating the formation of these networks, the potential of DLA to replicate the complexity and adaptability inherent in bacterial cellulose’s growth process is investigated. The results demonstrate that DLA not only mimics the structural organization of bacterial cellulose but also offers new insights into optimizing material properties for ecological applications for a guided growth. Through this code-driven computational approach, this research aims to contribute to the growing body of work on ecological intelligence in design, providing a framework for developing biomimetic materials that promote sustainability and resilience. This research bridges microbial processes with computational design, advancing the application of ecological intelligence in material innovation and regenerative architecture.

Kaynakça

  • Chunyan, Z. (2020). Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 8, 605374. https://doi.org/10.3389/fbioe.2020.605374
  • Dayal, M. S., & Catchmark, J. M. (2016). Mechanical and structural property analysis of bacterial cellulose composites. Carbohydrate polymers, 144, 447-453. https://doi.org/10.1016/j.carbpol.2016.02.055
  • Derme, T., Mitterberger, D., & Di Tanna, U. (2016). Growth based fabrication techniques for bacterial cellulose. In ACADIA 2016: Posthuman frontiers: data, designers, and cognitive machines, 488-495.
  • Durrett, R. (1984). Brownian motion and martingales in analysis. Wadsworth, Belmont CA.
  • El Gazzar, N. T., Estévez, A. T., & Abdallah, Y. K. (2021). Bacterial Cellulose As A Base Material In Biodigital Architecture. Journal of Green Building, 16(2), 173-199. https://doi.org/10.3992/jgb.16.2.173
  • Gazit, M. (2016). “Living matter: biomaterials for design and architecture”, Doctoral dissertation, Massachusetts Institute of Technology.
  • Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623. https://doi.org/10.1016/j.mser.2021.100623
  • Hornung, M., Biener, R. and Schmauder, H.-P. (2009), Dynamic modelling of bacterial cellulose formation. Eng. Life Sci., 9: 342-347. https://doi.org/10.1002/elsc.200900038
  • Jin, K., Jin, C., & Wu, Y. (2022). Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers, 283, 119171.
  • Knott, B. C., Crowley, M. F., Himmel, M. E., Zimmer, J., & Beckham, G. T. (2016). Simulations of cellulose translocation in the bacterial cellulose suggest a regulatory mechanism for the dimeric structure of cellulose. Chemical Science, 7(5), 3108-3116. https://doi.org/10.1039/C5SC04558D
  • Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Biotechnology for Fuels and Chemicals, 763-774. https://doi.org/10.1007/978-1-60327-526-2_70
  • Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., ... & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532-546. https://dx.doi.org/10.1016/j.tifs.2021.04.016
  • Papageorgakopoulou, H., & Maier, W. J. (1984). A new modeling technique and computer simulation of bacterial growth. Biotechnology and bioengineering, 26(3), 275-284. https://doi.org/10.1002/bit.260260313
  • Rincón, A., Hoyos, F. E., & Candelo-Becerra, J. E. (2024). Dynamic Modeling of Bacterial Cellulose Production Using Combined Substrate- and Biomass-Dependent Kinetics. Computation, (12)12, 239. https://doi.org/10.3389/fbioe.2020.605374
  • Shrivastav, P., Pramanik, S., Vaidya, G., Abdelgawad, M. A., Ghoneim, M. M., Singh, A., ... & Abourehab, M. A. (2022). Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. Journal of Materials Chemistry B, 10(17), 3199-3241. https://doi.org/10.1039/D1TB02709C
  • Steiner, F., Simmons, M., Gallagher, M., Ranganathan, J., & Robertson, C. (2013). The ecological imperative for environmental design and planning. Frontiers in Ecology and the Environment, 11(7), 355-361. https://doi.org/10.1890/130052
  • Turhan, G. D., Afsar, S., Ozel, B., Doyuran, A., Varinlioglu, G. and Bengisu, M. (2022) 3D Printing with Bacterial Cellulose-Based Bioactive Composites for Design Applications. In Proceedings of the eCAADe 2022: Co-creating the Future - Inclusion in and through Design, 1, 77- 84. https://doi.org/10.52842/conf.ecaade.2022.1.077
  • Turhan, G. D., Varinlioglu, G. and Bengisu, M. (2023). Bio-based material integration into computational form finding tools by introducing tensile properties in the case of bacterial cellulose-based composites. International Journal of Architectural Computing 21 (4), 781-794.
  • Witten, T. A. Jr. & Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters 47, 1400–1403. https://doi.org/10.1103/PhysRevLett.47.1400
  • Wu, Z., Chen, S., Li, J., Wang, B., Jin, M., Liang, Q., ... & Wang, H. (2023). Insights into hierarchical structure–property–application relationships of advanced bacterial cellulose materials. Advanced Functional Materials, 33(12), 2214327. https://doi.org/10.1002/adfm.202214327
  • Yazıcı, S & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543. https://doi.org/10.1016/j.jobe.2020.101543
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimari Bilgi İşlem ve Görselleştirme Yöntemleri, Mimarlık ve Tasarımda Bilgi Teknolojileri, Mimarlıkta Malzeme ve Teknoloji, Sürdürülebilir Mimari
Bölüm Araştırma Makalesi
Yazarlar

Gozde Damla Turhan-haskara

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 12 Ocak 2025
Kabul Tarihi 6 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Turhan-haskara, G. D. (2025). Code-driven Simulation of Bacterial Cellulose Growth for Material Innovation and Eco-intelligent Architecture. Journal of Computational Design, 6(2), 235-254. https://doi.org/10.53710/jcode.1618503

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.