Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüz Yüze Eğitime Geçiş Sürecinde Güvenli Sınıf Kapasitelerinin Belirlenmesine Yönelik Veri Odaklı Bir Yaklaşım

Yıl 2025, Cilt: 6 Sayı: 2, 281 - 316, 30.09.2025
https://doi.org/10.53710/jcode.1661952

Öz

Bu çalışmada, yüz yüze eğitime geçiş sürecinde mevcut sınıflarda kaç öğrencinin bulunması gerektiğini tahmin etmek amacıyla farklı modeller geliştirilmiştir. Covid-19 virüsünün bulaşma riskini belirleyen faktör yalnızca fiziksel mesafe değil, aynı zamanda maruz kalma süresidir. Bu doğrultuda, mevcut ilkokul sınıflarının ve pencere boyutlarının kullanılarak sınıfların fiziksel boyutlar açısından verimliliğini değerlendirmek için Bulanık Mantık yöntemiyle bir model oluşturulmuştur. Geliştirilen model doğrultusunda elde edilen veriler kullanılarak çeşitli modeller geliştirilmiştir. Elde edilen modellerin değerlendirilmesi sonucunda, derin sinir ağları modelinin bu tahmin probleminde diğer gözetimli öğrenme yöntemlerine kıyasla daha uygun bir yaklaşım olduğu sonucuna varılmıştır. Geliştirilen modelin, eğitim yapılarında gerekli önlemlerin alınması ve virüsün yayılmasını önlemeye yönelik düzenlemelerin yapılması için hazırlanan yönergelere katkı sağlaması beklenmektedir. Yalnızca ilkokul sınıfları incelenerek elde edilen verilerle geliştirilen modeller, farklı eğitim seviyelerindeki sınıfların incelenmesiyle elde edilecek verilerle de uygulanabilir.

Kaynakça

  • Alsubaie, M. A. (2022). Distance education and the social literacy of elementary school students during the COVID-19 pandemic. Heliyon, 8(7). https://doi.org/10.1016/j.heliyon.2022.e09811
  • American Institute of Architects. (2020, July 31). Re-occupancy assessment tool V3.0. American Institute of Architects. Retrieved July 11, 2021, from https://content.aia.org/sites/default/files/2020 08/ReOccupancy_Assessment_Tool_v3.pdf
  • Amir, L. R., Tanti, I., Maharani, D. A., Wimardhani, Y. S., Julia, V., Sulijaya, B., & Puspitawati, R. (2020). Student perspective of classroom and distance learning during COVID-19 pandemic in the undergraduate dental study program Universitas Indonesia. BMC medical education, 20(1), 392. https://doi.org/10.1186/s12909-020-02312-0
  • Amirzadeh, M., Sobhaninia, S., Buckman, S. T., & Sharifi, A. (2023). Towards building resilient cities to pandemics: A review of COVID-19 literature. Sustainable cities and society, 89, 104326. https://doi.org/10.1016/j.scs.2022.104326
  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Dehghani, A. A., Movahedi, N., Ghorbani, K., & Eslamian, S. (2023). Decision tree algorithms. In Handbook of hydroinformatics (pp. 171-187). Elsevier. https://doi.org/10.1016/B978-0-12-821285-1.00004-X
  • DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons. Diker, F., & Erkan, İ. (2022). Fuzzy logic method in the design of elementary school classrooms. Architectural Engineering and Design Management, 18(5), 739-758. https://doi.org/10.1080/17452007.2021.1910925
  • Gaisie, E., Oppong-Yeboah, N. Y., & Cobbinah, P. B. (2022). Geographies of infections: Built environment and COVID-19 pandemic in metropolitan Melbourne. Sustainable cities and society, 81, 103838. https://doi.org/10.1016/j.scs.2022.103838
  • Gupta, M. M. (2021). Impact of Coronavirus Disease (COVID-19) pandemic on classroom teaching: Challenges of online classes and solutions. Journal of education and health promotion, 10, 155. https://doi.org/10.4103/jehp.jehp_1104_20
  • Güzelci, O. Z., Şen Bayram, A. K., Alaçam, S., Güzelci, H., Akkuyu, E. I., & Şencan, İ. (2021). Design tactics for enhancing the adaptability of primary and middle schools to the new needs of postpandemic reuse. Archnet- IJAR: International Journal of Architectural Research, 15(1), 148-166. https://doi.org/10.1108/ARCH-10-2020-0237
  • Heiberger, R. M., & Neuwirth, E. (2009). Polynomial regression. In R through excel: a spreadsheet interface for statistics, data analysis, and graphics (pp. 269-284). Springer New York. DOI 10.1007/978-1-4419-0052-4 11
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507. DOI: 10.1126/science.1127647
  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97. DOI: 10.1109/MSP.2012.2205597
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 103). Springer.
  • Karadag, I., Güzelci, O. Z., & Alaçam, S. (2023). EDU-AI: A twofold machine learning model to support classroom layout generation. Construction Innovation, 23(4), 898-914. https://doi.org/10.1108/CI-02-2022- 0034
  • Kavuncu, S. K. (2018). Makine öğrenmesi ve derin öğrenme: Nesne tanıma uygulaması [Master’s thesis, Kırıkkale University, Institute of Science and Technology]. YÖK Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Keogh‐Brown, M. R., Wren‐Lewis, S., Edmunds, W. J., Beutels, P., & Smith, R. D. (2010). The possible macroeconomic impact on the UK of an influenza pandemic. Health Economics, 19(11), 1345-1360. https://doi.org/10.1002/hec.1554
  • Li, J., & Che, W. (2022). Challenges and coping strategies of online learning for college students in the context of COVID-19: A survey of Chinese universities. Sustainable Cities and Society, 83, 103958. https://doi.org/10.1016/j.scs.2022.103958
  • Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., ... & Zhang, Z. (2020). Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerging Infectious Diseases, 26(6), 1320. 10.3201/eid2606.200239
  • Liu, Y., Wang, X., Song, C., Chen, J., Shu, H., Wu, M., ... & Pei, T. (2023). Quantifying human mobility resilience to the COVID-19 pandemic: A case study of Beijing, China. Sustainable Cities and Society, 89, 104314. https://doi.org/10.1016/j.scs.2022.104314
  • Lordan, R., FitzGerald, G. A., & Grosser, T. (2020). Reopening schools during COVID-19. Science, 369(6508), 1146-1146. https://doi.org/10.1126/science.abe5765
  • Mitchell, T. M. (1997). Machine learning. McGraw-Hill. Retrieved from https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell. pdf [Date of access: 11.07.2021]
  • Mouratidis, K., & Papagiannakis, A. (2021). COVID-19, internet, and mobility: The rise of telework, telehealth, e-learning, and eshopping. Sustainable Cities and Society, 74, 103182. https://doi.org/10.1016/j.scs.2021.103182
  • Naqa, I., & Murphy, M. J. (2015). What is machine learning? In I. El Naqa, R. Li, M. Murphy (Eds.), Machine Learning in Radiation Oncology (3-11). Springer International Publishing. https://doi.org/10.1007/978-3- 319-18305-3_1
  • Neuwirth, L. S., Jović, S., & Mukherji, B. R. (2021). Reimagining higher education during and post-COVID-19: Challenges and opportunities. Journal of Adult And Continuing Education, 27(2), 141- 156. https://doi.org/10.1177/1477971420947738
  • Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International journal of surgery, 78, 185-193. https://doi.org/10.1016/j.ijsu.2020.04.018
  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
  • Suchetana, B., Rajagopalan, B., & Silverstein, J. (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model. Science of the Total Environment, 598, 249-257. https://doi.org/10.1016/j.scitotenv.2017.03.236
  • United Nations Educational, Scientific and Cultural Organization (UNESCO), (2020). COVID-19 impact on Education. Retrieved June 25, 2021, from https://en.unesco.org/themes/education-emergencies/coronavirusschool-closures
  • Vapnik, V. N. (1997, October). The support vector method. In International conference on artificial neural networks (pp. 261-271). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0020166
  • World Health Organization (WHO). (2020). Coronavirus disease (COVID-19) advice for the public. Retrieved July 2, 2021, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
  • Yetiş, C., & Kayılı, M. T. (2021). Covid-19 salgını: eğitim yapıları üzerinden yeniden kullanım değerlendirmesi. Journal of Awareness, 6(2), 199-2114. https://doi.org/10.26809/joa.6.2.10
  • Yüksek Öğretim Kurulu (YÖK) (2020). Guide for the Development of Healthy and Clean Environments in Higher Education Institutions. Retrieved July 11, 2021, from https://eski.yok.gov.tr/Documents/Yayinlar/Yayinlarimiz/2020/yuksekogretim-kurumlarinda-saglikli-ve-temiz-ortamlarin-gelistirilmesikilavuzu.pdf
  • Yu, R., Ostwald, M. J., Gu, N., Skates, H., & Feast, S. (2022). Evaluating the effectiveness of online teaching in architecture courses. Architectural Science Review, 65(2), 89-100. https://doi.org/10.1080/00038628.2021.1921689

A Data-Driven Approach to Determining Safe Classroom Capacities During the Transition to Face-to-Face Education

Yıl 2025, Cilt: 6 Sayı: 2, 281 - 316, 30.09.2025
https://doi.org/10.53710/jcode.1661952

Öz

In this paper, different models have been developed to estimate how many students should be in the existing classrooms to be less affected and protected from the Covid19 virus during transition to face-to-face education. The factor that determines the risk of transmission of the Covid 19 virus is not only physical distance, but the duration of exposure. In this direction, model has been created by Fuzzy Logic method to evaluate the efficiency of classrooms in terms of physical sizes using the classroom and window sizes of existing primary schools. Various models have been developed by using the data obtained in line with the developed model. After the evaluation of the obtained models, it was concluded that deep neural networks model can be accepted as a more suitable approach for this estimation problem than other supervised learning methods. It is expected that the developed model will help the guidelines prepared for taking necessary precautions in educational structures and making arrangements to prevent the transmission of the virus. Developed with the data obtained by examining only the primary school classrooms, developed models can also be applied with the data to be obtained by examining the classrooms of different levels.

Kaynakça

  • Alsubaie, M. A. (2022). Distance education and the social literacy of elementary school students during the COVID-19 pandemic. Heliyon, 8(7). https://doi.org/10.1016/j.heliyon.2022.e09811
  • American Institute of Architects. (2020, July 31). Re-occupancy assessment tool V3.0. American Institute of Architects. Retrieved July 11, 2021, from https://content.aia.org/sites/default/files/2020 08/ReOccupancy_Assessment_Tool_v3.pdf
  • Amir, L. R., Tanti, I., Maharani, D. A., Wimardhani, Y. S., Julia, V., Sulijaya, B., & Puspitawati, R. (2020). Student perspective of classroom and distance learning during COVID-19 pandemic in the undergraduate dental study program Universitas Indonesia. BMC medical education, 20(1), 392. https://doi.org/10.1186/s12909-020-02312-0
  • Amirzadeh, M., Sobhaninia, S., Buckman, S. T., & Sharifi, A. (2023). Towards building resilient cities to pandemics: A review of COVID-19 literature. Sustainable cities and society, 89, 104326. https://doi.org/10.1016/j.scs.2022.104326
  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Dehghani, A. A., Movahedi, N., Ghorbani, K., & Eslamian, S. (2023). Decision tree algorithms. In Handbook of hydroinformatics (pp. 171-187). Elsevier. https://doi.org/10.1016/B978-0-12-821285-1.00004-X
  • DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons. Diker, F., & Erkan, İ. (2022). Fuzzy logic method in the design of elementary school classrooms. Architectural Engineering and Design Management, 18(5), 739-758. https://doi.org/10.1080/17452007.2021.1910925
  • Gaisie, E., Oppong-Yeboah, N. Y., & Cobbinah, P. B. (2022). Geographies of infections: Built environment and COVID-19 pandemic in metropolitan Melbourne. Sustainable cities and society, 81, 103838. https://doi.org/10.1016/j.scs.2022.103838
  • Gupta, M. M. (2021). Impact of Coronavirus Disease (COVID-19) pandemic on classroom teaching: Challenges of online classes and solutions. Journal of education and health promotion, 10, 155. https://doi.org/10.4103/jehp.jehp_1104_20
  • Güzelci, O. Z., Şen Bayram, A. K., Alaçam, S., Güzelci, H., Akkuyu, E. I., & Şencan, İ. (2021). Design tactics for enhancing the adaptability of primary and middle schools to the new needs of postpandemic reuse. Archnet- IJAR: International Journal of Architectural Research, 15(1), 148-166. https://doi.org/10.1108/ARCH-10-2020-0237
  • Heiberger, R. M., & Neuwirth, E. (2009). Polynomial regression. In R through excel: a spreadsheet interface for statistics, data analysis, and graphics (pp. 269-284). Springer New York. DOI 10.1007/978-1-4419-0052-4 11
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507. DOI: 10.1126/science.1127647
  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97. DOI: 10.1109/MSP.2012.2205597
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 103). Springer.
  • Karadag, I., Güzelci, O. Z., & Alaçam, S. (2023). EDU-AI: A twofold machine learning model to support classroom layout generation. Construction Innovation, 23(4), 898-914. https://doi.org/10.1108/CI-02-2022- 0034
  • Kavuncu, S. K. (2018). Makine öğrenmesi ve derin öğrenme: Nesne tanıma uygulaması [Master’s thesis, Kırıkkale University, Institute of Science and Technology]. YÖK Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Keogh‐Brown, M. R., Wren‐Lewis, S., Edmunds, W. J., Beutels, P., & Smith, R. D. (2010). The possible macroeconomic impact on the UK of an influenza pandemic. Health Economics, 19(11), 1345-1360. https://doi.org/10.1002/hec.1554
  • Li, J., & Che, W. (2022). Challenges and coping strategies of online learning for college students in the context of COVID-19: A survey of Chinese universities. Sustainable Cities and Society, 83, 103958. https://doi.org/10.1016/j.scs.2022.103958
  • Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., ... & Zhang, Z. (2020). Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerging Infectious Diseases, 26(6), 1320. 10.3201/eid2606.200239
  • Liu, Y., Wang, X., Song, C., Chen, J., Shu, H., Wu, M., ... & Pei, T. (2023). Quantifying human mobility resilience to the COVID-19 pandemic: A case study of Beijing, China. Sustainable Cities and Society, 89, 104314. https://doi.org/10.1016/j.scs.2022.104314
  • Lordan, R., FitzGerald, G. A., & Grosser, T. (2020). Reopening schools during COVID-19. Science, 369(6508), 1146-1146. https://doi.org/10.1126/science.abe5765
  • Mitchell, T. M. (1997). Machine learning. McGraw-Hill. Retrieved from https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell. pdf [Date of access: 11.07.2021]
  • Mouratidis, K., & Papagiannakis, A. (2021). COVID-19, internet, and mobility: The rise of telework, telehealth, e-learning, and eshopping. Sustainable Cities and Society, 74, 103182. https://doi.org/10.1016/j.scs.2021.103182
  • Naqa, I., & Murphy, M. J. (2015). What is machine learning? In I. El Naqa, R. Li, M. Murphy (Eds.), Machine Learning in Radiation Oncology (3-11). Springer International Publishing. https://doi.org/10.1007/978-3- 319-18305-3_1
  • Neuwirth, L. S., Jović, S., & Mukherji, B. R. (2021). Reimagining higher education during and post-COVID-19: Challenges and opportunities. Journal of Adult And Continuing Education, 27(2), 141- 156. https://doi.org/10.1177/1477971420947738
  • Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International journal of surgery, 78, 185-193. https://doi.org/10.1016/j.ijsu.2020.04.018
  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
  • Suchetana, B., Rajagopalan, B., & Silverstein, J. (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model. Science of the Total Environment, 598, 249-257. https://doi.org/10.1016/j.scitotenv.2017.03.236
  • United Nations Educational, Scientific and Cultural Organization (UNESCO), (2020). COVID-19 impact on Education. Retrieved June 25, 2021, from https://en.unesco.org/themes/education-emergencies/coronavirusschool-closures
  • Vapnik, V. N. (1997, October). The support vector method. In International conference on artificial neural networks (pp. 261-271). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0020166
  • World Health Organization (WHO). (2020). Coronavirus disease (COVID-19) advice for the public. Retrieved July 2, 2021, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
  • Yetiş, C., & Kayılı, M. T. (2021). Covid-19 salgını: eğitim yapıları üzerinden yeniden kullanım değerlendirmesi. Journal of Awareness, 6(2), 199-2114. https://doi.org/10.26809/joa.6.2.10
  • Yüksek Öğretim Kurulu (YÖK) (2020). Guide for the Development of Healthy and Clean Environments in Higher Education Institutions. Retrieved July 11, 2021, from https://eski.yok.gov.tr/Documents/Yayinlar/Yayinlarimiz/2020/yuksekogretim-kurumlarinda-saglikli-ve-temiz-ortamlarin-gelistirilmesikilavuzu.pdf
  • Yu, R., Ostwald, M. J., Gu, N., Skates, H., & Feast, S. (2022). Evaluating the effectiveness of online teaching in architecture courses. Architectural Science Review, 65(2), 89-100. https://doi.org/10.1080/00038628.2021.1921689
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme
Bölüm Araştırma Makalesi
Yazarlar

Fadime Diker 0000-0001-8088-1570

İlker Erkan 0000-0001-7104-245X

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 14 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Diker, F., & Erkan, İ. (2025). A Data-Driven Approach to Determining Safe Classroom Capacities During the Transition to Face-to-Face Education. Journal of Computational Design, 6(2), 281-316. https://doi.org/10.53710/jcode.1661952

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.