Araştırma Makalesi
BibTex RIS Kaynak Göster

Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis

Yıl 2025, Cilt: 1 Sayı: 2, 51 - 60, 26.12.2025
https://doi.org/10.5281/zenodo.17976793

Öz

Field pea (Pisum sativum L.) is a significant legume crop in Pakistan, and the development of high-yielding varieties is essential for enhancing productivity. This study aimed to evaluate the morphological diversity of 25 pea genotypes using both image-based phenotyping and field-based traits. A total of 21 traits were analyzed. Principal Component Analysis (PCA) revealed a strong positive correlation among pod area, pod perimeter, pod length, pod weight, pod aspect ratio, number of seeds per pod, seed weight per pod, and number of nodes, with pod area showing the highest eigenvalue of 9.715. Cluster analysis identified four major clusters and six sub-clusters, highlighting significant genetic diversity in the germplasm. Correlation analysis revealed a highly significant positive correlation between pod weight and pod factor from density (r = 0.91), seed weight per pod (r = 0.88), and number of seeds per pod (r = 0.85). Path coefficient analysis indicated that pod area had the highest direct positive effect on pod weight (0.010), while pod length exhibited a negative direct effect (-0.002). Genetic variance estimates ranged from 41,108,350 for pod area to 0.00 for pod roundness, with phenotypic variance ranging from 50,332,040 for pod area to 0.00 for pod roundness. Broad-sense heritability was high for traits such as pod weight (0.80), pod area (0.82), seed weight per pod (0.81), and number of pods per plant (0.81). These findings highlight the strong genetic influence on pea yield-related traits and provide a foundation for future breeding programs aimed at improving productivity.

Kaynakça

  • Abdullah, A.M., Subhani, MG., Ahmad, J., & Anwar, J. (2018). Multivariate analysis of some yield and yield related traits of barley (Hordeum vulgare L.) genotypes. Academia Journal of Agricultural Research, 67, 189- 197.
  • Assen, K. Y. (2020). Trait associations in prostrate and semi- leaf less type field pea (Pisum sativum L.) gene pools. American Journal of Environmental Sciences, 4, 54-60.
  • Bai, G., Ge, Y., Hussain, W., Baenziger, P.S., & Graef, G. (2016). A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Computures and Electronics in Agriculture, 128, 181–192.
  • Bijalwan, P., Raturi, A., Mishra, A. C. (2018). Character Association and Path Analysis Studies in Garden Pea (Pisum sativum L.) for Yield and Yield Attributes. International Journal of Current Microbiology and Applied Sciences, 7(3), 3491-3495.
  • Bouziane, H. R., Berkani, S., Merdas, S., Merzoug, S. N., & Abdelguerfi, A. (2015). Genetic diversity of traditional genotypes of barley (Hordeum vulgare L.) in Algeria by pheno-morphological and agronomic traits. African Journal of Agricultural Research, 10(31), 3041-3048.
  • Cupic, T., Tucak, M., Popovic, S., Bolaric, S., Grljusic, S., & Kosumplik, V. (2009). Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. Journal of Food, Agriculture and Environment, 7(3, 4), 343-348.
  • Daniel, I. O., Adeboye, K. A., Oduwaye, O. O., & Porbeni, J. (2012). Digital seed morpho-metric characterization of tropical maize inbred lines for cultivar discrimination. International Journal of Plant Breeding and Genetics, 6(4), 245–251. Doi:10.3923/ijpbg.2012.245.251.
  • Dell’Aquila, A. (2006). Computerized seed imaging: a new tool to evaluate germination quality. Commun Bio Crop Science, 1(1), 20–31.
  • Dewy, D. R., & Lu, K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy Journal, 51, 515-518.
  • Dyulgerov, N., & Dyulgerova, B. (2018). Phenotypic diversity in six-rowed winter barley (Hordeum sativum L.) varieties. Agricultural Science and Technology, 10(1), 16-20.
  • Eticha, F., Grausgruber, H., & Berghoffer, E. (2010). Multivariate analysis of agronomic and quality traits of hull-less spring barley (Hordeum vulgare L.). Journal of Plant Breeding and Crop Science, 2(5), 81-95.
  • FAO. (2023). FAOSTAT: FAO Statistical Databases. Food and Agriculture Organization.
  • Fontes, M. M. P., Carvalho, C. R., Clarindo, W. R. (2014). Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Systematics and Evolution, 300(7), 1621–1626. 10.1007/s00606-014-0987-y.
  • Ghixari, B., Vrapi, H., & Hobdari, V. (2014). Morphological characterization of pea (Pisum sativum L.) genotypes stored in Albanian genebank. Albanian Journal of Agricultural Sciences. Special Edition. 169-173.
  • Gomez, G. E., & Ligarreto, G.A. (2012). Analysis of genetic effects of major genes on yield traits of a pea (Pisum sativum L.) cross between the Santa Isabel x WSU 31 varieties. Agronomia Colombiana, 30(3), 317-325.
  • Hornokova, O., Zavodna, M., Zakova, M., Kraic, J., & Debre, F. (2003). Diversity of common bean landraces collected in the western and eastern Carpatien. Czech Journal of Genetics and Plant Breeding, 39, 73-83.
  • Joshi, B. K., Mudwari, A., Bhatta, M. R., & Ferrara, G. O. (2004). Genetic diversity in Nepalese wheat cultivars based on agromorphological traits and coefficients of parentage. Nepal Agriculture Research Journal, 5, 7-17.
  • Katoch, V., Singh, P., Mayanglambam, B. D., Sharma, A., Sharma, G. D., & Sharma, J. K. (2016). Study of genetic variability, character association, path analysis and selection parameters for heterotic recombinant inbred lines of garden peas (Pisum sativum var. hortense L.) under mid- hill conditions of Himachal Pradesh, India. Legume Research, 39(2), 163-169.
  • Kaur, V., Kumari, J., Manju, M., Jacob, S. R., Panwar, B. S. (2018). Genetic diversity analysis of indigenous and exotic germplasm of barley (Hordeum vulgare L.) and identification of trait specific superior accessions. Society for Advancement of Wheat and Barley Research, 10, 190-197.
  • Keneni, G., Jarso, M., Wolabu, T., & Dino, G. (2005). Extent and pattern of genetic diversity for morpho- agronomic traits in Ethiopian highland pulse landraces: I. Field pea (Pisum sativum L.). Genetic Resources and Crop Evolution, 5, 539-549.
  • Kumar, S., & Dubey, D. K. (2001). Variability, heritability and correlation studies in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsletter, 2, 79-81.
  • Kumar, V. R., & Sharma, R. R. (2006). Character association studies in garden pea. Indian Journal of Horticulture, 63, 185-187.
  • Kwon, S. H., & Torrie, J. H. (1964). Heritability and interrelationship among traits of two soybean populations. Crop Science, 4, 196–198.
  • Lewis, G., Schrirer, B., Mackinder, B., & Lock, M. (2005). Legumes of the World; Royal Botanical Gardens: Kew, UK, ISBN190 347806. Doi:10.1017/S0960428606190198.
  • Mahajan, R. C., Wadikar, P. B., Pole, S. P., & Dhuppe, M. V. (2011). Variability, correlation and path analysis studies in sorghum. Research Journal of Agricultural Science, 2(1), 101-103.
  • Milczak, M., Pedzinski, M., Mnichowska, H., Szwed-Urbas, K., & Rybinski, W. (2001). Creative breeding of grasspea (Lathyrus sativus L.) in Poland. Lathyrus Lathyrism Newsletter, 2, 85-89.
  • Ramzan, A., Noor, T., Khan, T. N., & Hina, A. (2014). Correlation, cluster and regression analysis of seed yield and its contributing traits in pea (Pisum sativum L.). Journal of Agricultural Research, 52, 481-488.
  • Rathi, R., & Dhaka, R. (2007). Genetic variability, correlation and path analysis in pea (Pisum sativum L.). Indian Journal of Plant Genetic Resources, 20, 126-129.
  • Sarikamiş, G., Yanmaz, R., Ermis, S., Bakir, M., & Yüksel, C. (2010). Genetic characterization of pea (Pisum sativum L.) gemplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 9(1), 591-600.
  • Sharma, V. K., & Bora, L. (2013). Studies on genetic variability and heterosis in vegetable pea (Pisum sativum L.) under high hills condition of Uttarakhand, India. African Journal of Agricultural Research, 8(18), 1891-1895.
  • Singh, S., Ahmed, N., Singh, D., Srivastva, K., Singh, R., & Mir, A. (2017). Genetic variability determination in garden pea (Pisum sativum L sub sp. hortense asch. and graebn.) by using the multivariate analysis. Legume Research - An International Journal, 40, 416-422.
  • Smykal, P., Corander, M. J., Jarkovsky, J., Flavell, A. J., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retro-transposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117, 413-424.
  • Tanabata, T., Shibaya, T., Hori, K., Ebana, K., & Yano, M. (2012). Smartgrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 160, 1871–1880.
  • Tiwari, G., & Lavanya, G.R. (2012). Genetic variability, character association and component analysis in F4 generation of field pea (Pisum sativum var. arvense L.). Karnataka Journal of Agricultural Sciences, 25, (2),173-175.
  • Tiwari, S., Sharma, R., Kushwah, S., & Pandey, B. (2020). Correlation analysis on different characters in garden pea (Pisum sativum var hortense L.). International Journal of Chemical Studies, 8, 1180-1183.
  • Williams, K., Munkvold, J., & Sorrells, M. (2013). Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 190(1), 99–116.
  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-585.
  • Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2019). Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 54, 31-39.

Görüntü Tabanlı Fenotiplemenin Entegrasyonu: PCA, Kümeleme Analizi ve Yol Katsayısı Analizi Kullanılarak Kapsamlı Bir Analiz

Yıl 2025, Cilt: 1 Sayı: 2, 51 - 60, 26.12.2025
https://doi.org/10.5281/zenodo.17976793

Öz

Tarla bezelyesi (Pisum sativum L.), Pakistan’da önemli bir baklagil ürünüdür ve yüksek verimli çeşitlerin geliştirilmesi, verimliliğin artırılması açısından kritik öneme sahiptir. Bu çalışma, 25 bezelye genotipinin morfolojik çeşitliliğini hem görüntü tabanlı fenotipleme hem de tarla temelli özellikler kullanarak değerlendirmeyi amaçlamıştır. Toplam 21 özellik analiz edilmiştir. Temel Bileşen Analizi (PCA), bakla alanı, bakla çevresi, bakla uzunluğu, bakla ağırlığı, bakla en-boy oranı, bakla başına tohum sayısı, bakla başına tohum ağırlığı ve boğum sayısı arasında güçlü pozitif korelasyon olduğunu ortaya koymuştur; en yüksek özdeğer ise bakla alanında 9,715 olarak tespit edilmiştir. Kümeleme analizi, gen havuzunda önemli genetik çeşitliliği ortaya koyarak dört ana küme ve altı alt küme belirlemiştir. Korelasyon analizi, bakla ağırlığı ile yoğunluk faktörü (r = 0,91), bakla başına tohum ağırlığı (r = 0,88) ve bakla başına tohum sayısı (r = 0,85) arasında yüksek düzeyde anlamlı pozitif korelasyon göstermiştir. Yol katsayısı analizi, bakla alanının bakla ağırlığı üzerinde en yüksek doğrudan pozitif etkiye (0,010) sahip olduğunu, bakla uzunluğunun ise negatif doğrudan etki (-0,002) gösterdiğini ortaya koymuştur. Genetik varyans tahminleri bakla alanı için 41.108.350 ile bakla yuvarlaklığı için 0,00 arasında değişirken, fenotipik varyans bakla alanı için 50.332.040 ile bakla yuvarlaklığı için 0,00 arasında değişmiştir. Geniş anlamda kalıtım derecesi ise bakla ağırlığı (0,80), bakla alanı (0,82), bakla başına tohum ağırlığı (0,81) ve bitki başına bakla sayısı (0,81) gibi özelliklerde yüksek bulunmuştur. Bu bulgular, bezelyede verimle ilişkili özellikler üzerinde güçlü genetik etkinin varlığını vurgulamakta ve verimliliği artırmaya yönelik ıslah programları için sağlam bir temel sunmaktadır.

Kaynakça

  • Abdullah, A.M., Subhani, MG., Ahmad, J., & Anwar, J. (2018). Multivariate analysis of some yield and yield related traits of barley (Hordeum vulgare L.) genotypes. Academia Journal of Agricultural Research, 67, 189- 197.
  • Assen, K. Y. (2020). Trait associations in prostrate and semi- leaf less type field pea (Pisum sativum L.) gene pools. American Journal of Environmental Sciences, 4, 54-60.
  • Bai, G., Ge, Y., Hussain, W., Baenziger, P.S., & Graef, G. (2016). A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Computures and Electronics in Agriculture, 128, 181–192.
  • Bijalwan, P., Raturi, A., Mishra, A. C. (2018). Character Association and Path Analysis Studies in Garden Pea (Pisum sativum L.) for Yield and Yield Attributes. International Journal of Current Microbiology and Applied Sciences, 7(3), 3491-3495.
  • Bouziane, H. R., Berkani, S., Merdas, S., Merzoug, S. N., & Abdelguerfi, A. (2015). Genetic diversity of traditional genotypes of barley (Hordeum vulgare L.) in Algeria by pheno-morphological and agronomic traits. African Journal of Agricultural Research, 10(31), 3041-3048.
  • Cupic, T., Tucak, M., Popovic, S., Bolaric, S., Grljusic, S., & Kosumplik, V. (2009). Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. Journal of Food, Agriculture and Environment, 7(3, 4), 343-348.
  • Daniel, I. O., Adeboye, K. A., Oduwaye, O. O., & Porbeni, J. (2012). Digital seed morpho-metric characterization of tropical maize inbred lines for cultivar discrimination. International Journal of Plant Breeding and Genetics, 6(4), 245–251. Doi:10.3923/ijpbg.2012.245.251.
  • Dell’Aquila, A. (2006). Computerized seed imaging: a new tool to evaluate germination quality. Commun Bio Crop Science, 1(1), 20–31.
  • Dewy, D. R., & Lu, K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy Journal, 51, 515-518.
  • Dyulgerov, N., & Dyulgerova, B. (2018). Phenotypic diversity in six-rowed winter barley (Hordeum sativum L.) varieties. Agricultural Science and Technology, 10(1), 16-20.
  • Eticha, F., Grausgruber, H., & Berghoffer, E. (2010). Multivariate analysis of agronomic and quality traits of hull-less spring barley (Hordeum vulgare L.). Journal of Plant Breeding and Crop Science, 2(5), 81-95.
  • FAO. (2023). FAOSTAT: FAO Statistical Databases. Food and Agriculture Organization.
  • Fontes, M. M. P., Carvalho, C. R., Clarindo, W. R. (2014). Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Systematics and Evolution, 300(7), 1621–1626. 10.1007/s00606-014-0987-y.
  • Ghixari, B., Vrapi, H., & Hobdari, V. (2014). Morphological characterization of pea (Pisum sativum L.) genotypes stored in Albanian genebank. Albanian Journal of Agricultural Sciences. Special Edition. 169-173.
  • Gomez, G. E., & Ligarreto, G.A. (2012). Analysis of genetic effects of major genes on yield traits of a pea (Pisum sativum L.) cross between the Santa Isabel x WSU 31 varieties. Agronomia Colombiana, 30(3), 317-325.
  • Hornokova, O., Zavodna, M., Zakova, M., Kraic, J., & Debre, F. (2003). Diversity of common bean landraces collected in the western and eastern Carpatien. Czech Journal of Genetics and Plant Breeding, 39, 73-83.
  • Joshi, B. K., Mudwari, A., Bhatta, M. R., & Ferrara, G. O. (2004). Genetic diversity in Nepalese wheat cultivars based on agromorphological traits and coefficients of parentage. Nepal Agriculture Research Journal, 5, 7-17.
  • Katoch, V., Singh, P., Mayanglambam, B. D., Sharma, A., Sharma, G. D., & Sharma, J. K. (2016). Study of genetic variability, character association, path analysis and selection parameters for heterotic recombinant inbred lines of garden peas (Pisum sativum var. hortense L.) under mid- hill conditions of Himachal Pradesh, India. Legume Research, 39(2), 163-169.
  • Kaur, V., Kumari, J., Manju, M., Jacob, S. R., Panwar, B. S. (2018). Genetic diversity analysis of indigenous and exotic germplasm of barley (Hordeum vulgare L.) and identification of trait specific superior accessions. Society for Advancement of Wheat and Barley Research, 10, 190-197.
  • Keneni, G., Jarso, M., Wolabu, T., & Dino, G. (2005). Extent and pattern of genetic diversity for morpho- agronomic traits in Ethiopian highland pulse landraces: I. Field pea (Pisum sativum L.). Genetic Resources and Crop Evolution, 5, 539-549.
  • Kumar, S., & Dubey, D. K. (2001). Variability, heritability and correlation studies in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsletter, 2, 79-81.
  • Kumar, V. R., & Sharma, R. R. (2006). Character association studies in garden pea. Indian Journal of Horticulture, 63, 185-187.
  • Kwon, S. H., & Torrie, J. H. (1964). Heritability and interrelationship among traits of two soybean populations. Crop Science, 4, 196–198.
  • Lewis, G., Schrirer, B., Mackinder, B., & Lock, M. (2005). Legumes of the World; Royal Botanical Gardens: Kew, UK, ISBN190 347806. Doi:10.1017/S0960428606190198.
  • Mahajan, R. C., Wadikar, P. B., Pole, S. P., & Dhuppe, M. V. (2011). Variability, correlation and path analysis studies in sorghum. Research Journal of Agricultural Science, 2(1), 101-103.
  • Milczak, M., Pedzinski, M., Mnichowska, H., Szwed-Urbas, K., & Rybinski, W. (2001). Creative breeding of grasspea (Lathyrus sativus L.) in Poland. Lathyrus Lathyrism Newsletter, 2, 85-89.
  • Ramzan, A., Noor, T., Khan, T. N., & Hina, A. (2014). Correlation, cluster and regression analysis of seed yield and its contributing traits in pea (Pisum sativum L.). Journal of Agricultural Research, 52, 481-488.
  • Rathi, R., & Dhaka, R. (2007). Genetic variability, correlation and path analysis in pea (Pisum sativum L.). Indian Journal of Plant Genetic Resources, 20, 126-129.
  • Sarikamiş, G., Yanmaz, R., Ermis, S., Bakir, M., & Yüksel, C. (2010). Genetic characterization of pea (Pisum sativum L.) gemplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 9(1), 591-600.
  • Sharma, V. K., & Bora, L. (2013). Studies on genetic variability and heterosis in vegetable pea (Pisum sativum L.) under high hills condition of Uttarakhand, India. African Journal of Agricultural Research, 8(18), 1891-1895.
  • Singh, S., Ahmed, N., Singh, D., Srivastva, K., Singh, R., & Mir, A. (2017). Genetic variability determination in garden pea (Pisum sativum L sub sp. hortense asch. and graebn.) by using the multivariate analysis. Legume Research - An International Journal, 40, 416-422.
  • Smykal, P., Corander, M. J., Jarkovsky, J., Flavell, A. J., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retro-transposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117, 413-424.
  • Tanabata, T., Shibaya, T., Hori, K., Ebana, K., & Yano, M. (2012). Smartgrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 160, 1871–1880.
  • Tiwari, G., & Lavanya, G.R. (2012). Genetic variability, character association and component analysis in F4 generation of field pea (Pisum sativum var. arvense L.). Karnataka Journal of Agricultural Sciences, 25, (2),173-175.
  • Tiwari, S., Sharma, R., Kushwah, S., & Pandey, B. (2020). Correlation analysis on different characters in garden pea (Pisum sativum var hortense L.). International Journal of Chemical Studies, 8, 1180-1183.
  • Williams, K., Munkvold, J., & Sorrells, M. (2013). Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 190(1), 99–116.
  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557-585.
  • Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2019). Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 54, 31-39.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Politikaları
Bölüm Araştırma Makalesi
Yazarlar

Muhammad Waqas Ashiq 2222-5252-6535-6634

Muhammad Sheraz 0009-0001-4691-2692

Muhammad Shahnawaz 2525-3534-5634-6534

Sidra Zahoor 3452-3463-4754-6735

Aamir Aziz 2536-3756-8655-8347

Sidra Razzaq 4859-5748-6798-3745

Muhammad Taimoor Farrukh Khan 3735-6856-9785-7845

Tayyab Nawaz Khan 3463-4784-7894-7387

Muhammad Yasir Malik 6869-8986-5445-4345

Muhammad Muzamil 3547-5788-7089-0765

Gönderilme Tarihi 30 Eylül 2025
Kabul Tarihi 28 Kasım 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

APA Waqas Ashiq, M., Sheraz, M., Shahnawaz, M., … Zahoor, S. (2025). Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis. Journal of Ecological Harmony, 1(2), 51-60. https://doi.org/10.5281/zenodo.17976793
AMA Waqas Ashiq M, Sheraz M, Shahnawaz M, vd. Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis. Journal of Ecological Harmony. Aralık 2025;1(2):51-60. doi:10.5281/zenodo.17976793
Chicago Waqas Ashiq, Muhammad, Muhammad Sheraz, Muhammad Shahnawaz, Sidra Zahoor, Aamir Aziz, Sidra Razzaq, Muhammad Taimoor Farrukh Khan, Tayyab Nawaz Khan, Muhammad Yasir Malik, ve Muhammad Muzamil. “Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis”. Journal of Ecological Harmony 1, sy. 2 (Aralık 2025): 51-60. https://doi.org/10.5281/zenodo.17976793.
EndNote Waqas Ashiq M, Sheraz M, Shahnawaz M, Zahoor S, Aziz A, Razzaq S, Taimoor Farrukh Khan M, Nawaz Khan T, Yasir Malik M, Muzamil M (01 Aralık 2025) Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis. Journal of Ecological Harmony 1 2 51–60.
IEEE M. Waqas Ashiq vd., “Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis”, Journal of Ecological Harmony, c. 1, sy. 2, ss. 51–60, 2025, doi: 10.5281/zenodo.17976793.
ISNAD Waqas Ashiq, Muhammad vd. “Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis”. Journal of Ecological Harmony 1/2 (Aralık2025), 51-60. https://doi.org/10.5281/zenodo.17976793.
JAMA Waqas Ashiq M, Sheraz M, Shahnawaz M, Zahoor S, Aziz A, Razzaq S, Taimoor Farrukh Khan M, Nawaz Khan T, Yasir Malik M, Muzamil M. Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis. Journal of Ecological Harmony. 2025;1:51–60.
MLA Waqas Ashiq, Muhammad vd. “Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis”. Journal of Ecological Harmony, c. 1, sy. 2, 2025, ss. 51-60, doi:10.5281/zenodo.17976793.
Vancouver Waqas Ashiq M, Sheraz M, Shahnawaz M, Zahoor S, Aziz A, Razzaq S, vd. Integrating Image-Based Phenotyping: A Comprehensive Analysis Using PCA, Cluster Analysis, and Path Coefficient Analysis. Journal of Ecological Harmony. 2025;1(2):51-60.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

33393