Derleme
BibTex RIS Kaynak Göster

Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi

Yıl 2025, Cilt: 1 Sayı: 1, 32 - 39, 30.06.2025
https://doi.org/10.5281/zenodo.15754960

Öz

Tarımsal üretim süreci, gıda ve ham madde sağlama açısından yaşamsal öneme sahip olmakla birlikte, çevresel açıdan önemli miktarda atık üretmektedir. Hasat sonrası bitkisel artıklar, hayvansal dışkılar, işleme yan ürünleri ve tarımsal ambalaj atıkları gibi farklı türlerdeki tarımsal atıklar, geleneksel yöntemlerle yönetildiğinde toprak, su ve hava kalitesi üzerinde olumsuz etkiler yaratmakta, ayrıca sera gazı emisyonlarına katkıda bulunmaktadır. Ancak bu atıklar, uygun teknolojilerle değerlendirildiğinde hem çevresel zararların azaltılmasına hem de ekonomik katma değerin artırılmasına katkı sağlayabilecek nitelikli kaynaklara dönüşebilir. Bu bağlamda çalışmanın amacı, tarımsal atıkların çevresel sürdürülebilirlik ilkeleri doğrultusunda nasıl değerlendirilebileceğini ortaya koymaktır.
Çalışmada, literatürde tanımlanmış başlıca tarımsal atık türleri incelenmiş; bu atıkların kompostlama, anaerobik çürütme ile biyogaz üretimi, piroliz yoluyla biyokömür eldesi ve biyoplastik gibi yeni nesil ürünlere dönüştürülmesi gibi yöntemlerle değerlendirilme potansiyelleri analiz edilmiştir. Ayrıca farklı ülkelerde uygulanan iyi örnekler üzerinden, atık yönetimi ile çevresel, ekonomik ve sosyal sürdürülebilirlik arasındaki ilişkiler değerlendirilmiştir. Sonuçlar, tarımsal atıkların yalnızca bertaraf edilmesi gereken bir yük değil, döngüsel ekonomi prensipleri çerçevesinde stratejik bir kaynak olarak ele alınması gerektiğini göstermektedir. Politika desteği, çiftçi eğitimi ve uygun teknolojik altyapı ile bu dönüşümün hem kırsal kalkınmaya hem de küresel çevre hedeflerine önemli katkılar sağlayabileceği vurgulanmaktadır.

Kaynakça

  • Anonim. (2020). Türk-Alman Biyogaz Projesi. https://tuerkei.diplo.de/tr-tr/themen/wirtschaft/-/1798692
  • Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Jonathan W.C. Wong J. W.C., Selvam, A., (2014). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource Technology, 168, 214–221. https://doi.org/10.1016/j.biortech.2014.01.048
  • Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027
  • Bhupendra, K., Mohammad, Y., & Maulin, P. S. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206(1), 112285. https://doi.org/10.1016/j.envres.2021.112285
  • Cayuela, M. L., Sánchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2014). Biochar and denitrification in soils: When, how much and why does biochar reduce N₂O emissions? Scientific Reports, 4, 3499. https://doi.org/10.1038/srep03499
  • European Commission. (2020). A new circular economy action plan. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0098
  • FAO. (2019). The state of the world’s biodiversity for food and agriculture. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/CA3129EN/ca3129en.pdf
  • Gustafsson, M., & Anderberg, S. (2022). Biogas policies and production development in Europe: A comparative analysis of eight countries. Biofuels, 13(8), 931–944. https://doi.org/10.1080/17597269.2022.2034380
  • Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100(22), 5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046
  • IPCC. (2014). Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5).
  • Jain, R., & Naik, S. N. (2022). Sustainable management of agricultural waste in India. In Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., & Sehrawat, R. (Eds.), Handbook of Solid Waste Management. Springer. https://doi.org/10.1007/978-981-16-4230-2_26
  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
  • Mata-Alvarez, J., Dosta, J., Macé, S., Astals, S., (2014). Codigestion of solid wastes: A review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, 31(2), 99–111. https://doi.org/10.3109/07388551.2010.525496
  • Mohan, D., Sarswat, A., Ok, Y. S., Pittman, C. U., (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low-cost and sustainable adsorbent–A critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120
  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., Vivekanand, V., (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927
  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer D. W., Ippolito, J. A., Collins, Hp. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973–989. https://doi.org/10.2134/jeq2011.0069
  • UNEP. (2020). Waste management outlook for Latin America and the Caribbean. United Nations Environment Programme. https://www.unep.org/ietc/resources/publication/waste-management-outlook-latin-america-and-caribbean
  • UNEP. (2024). Global waste management outlook 2024. United Nations Environment Programme.
  • Wael, M. S., Hamada, R. B., Mamoudou, S., Simpson, C. R., El-Maged, T. A. A., Rady, M. M., Nelson, S. D., (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333–347. https://doi.org/10.1016/j.sajb.2019.01.015
  • Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860. https://doi.org/10.1007/s00253-009-2246-7
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(5), 56. https://doi.org/10.1038/ncomms1053
  • Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., & Chang, A. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice-growing cycles. Field Crops Research, 127, 153–160. https://doi.org/10.1016/j.fcr.2011.11.020
  • Zhao, N., Teng, J., & Chen, Y. (2018). Current situation and analysis of agriculture waste management in China. World Environment, 4, 44–47.
  • Zhu, N., Deng, C., Xiong, Y., & Qian, H. (2004). Performance characteristics of three aeration systems in the swine manure composting. Bioresource Technology, 95(3), 319–326. https://doi.org/10.1016/j.biortech.2004.02.021

EVALUATION OF AGRICULTURAL WASTES IN TERMS OF ENVIRONMENTAL SUSTAINABILITY

Yıl 2025, Cilt: 1 Sayı: 1, 32 - 39, 30.06.2025
https://doi.org/10.5281/zenodo.15754960

Öz

The agricultural production process is vital for providing food and raw materials; however, it generates significant amounts of waste from an environmental perspective. Various types of agricultural wastes, such as post-harvest plant residues, animal manure, processing by-products, and agricultural packaging materials, can adversely affect soil, water, and air quality and contribute to greenhouse gas emissions when managed by traditional methods. Nevertheless, when these wastes are valorized using appropriate technologies, they can be transformed into valuable resources that help reduce environmental harm and increase economic added value. In this context, the aim of this study is to demonstrate how agricultural wastes can be sustainably managed in line with environmental sustainability principles.
The study examines the main types of agricultural waste identified in the literature and analyzes their valorization potential through methods such as composting, anaerobic digestion for biogas production, pyrolysis to produce biochar, and conversion into next-generation products like bioplastics. Additionally, the relationships between waste management and environmental, economic, and social sustainability are evaluated through best practice examples from different countries. The results indicate that agricultural waste should not be viewed merely as a disposal burden but rather as a strategic resource within the framework of circular economy principles. It is emphasized that with policy support, farmer education, and appropriate technological infrastructure, this transformation can significantly contribute to both rural development and global environmental goals.

Kaynakça

  • Anonim. (2020). Türk-Alman Biyogaz Projesi. https://tuerkei.diplo.de/tr-tr/themen/wirtschaft/-/1798692
  • Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Jonathan W.C. Wong J. W.C., Selvam, A., (2014). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource Technology, 168, 214–221. https://doi.org/10.1016/j.biortech.2014.01.048
  • Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027
  • Bhupendra, K., Mohammad, Y., & Maulin, P. S. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206(1), 112285. https://doi.org/10.1016/j.envres.2021.112285
  • Cayuela, M. L., Sánchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2014). Biochar and denitrification in soils: When, how much and why does biochar reduce N₂O emissions? Scientific Reports, 4, 3499. https://doi.org/10.1038/srep03499
  • European Commission. (2020). A new circular economy action plan. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0098
  • FAO. (2019). The state of the world’s biodiversity for food and agriculture. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/CA3129EN/ca3129en.pdf
  • Gustafsson, M., & Anderberg, S. (2022). Biogas policies and production development in Europe: A comparative analysis of eight countries. Biofuels, 13(8), 931–944. https://doi.org/10.1080/17597269.2022.2034380
  • Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100(22), 5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046
  • IPCC. (2014). Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5).
  • Jain, R., & Naik, S. N. (2022). Sustainable management of agricultural waste in India. In Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., & Sehrawat, R. (Eds.), Handbook of Solid Waste Management. Springer. https://doi.org/10.1007/978-981-16-4230-2_26
  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
  • Mata-Alvarez, J., Dosta, J., Macé, S., Astals, S., (2014). Codigestion of solid wastes: A review of its uses and perspectives including modeling. Critical Reviews in Biotechnology, 31(2), 99–111. https://doi.org/10.3109/07388551.2010.525496
  • Mohan, D., Sarswat, A., Ok, Y. S., Pittman, C. U., (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low-cost and sustainable adsorbent–A critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120
  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., Vivekanand, V., (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927
  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer D. W., Ippolito, J. A., Collins, Hp. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973–989. https://doi.org/10.2134/jeq2011.0069
  • UNEP. (2020). Waste management outlook for Latin America and the Caribbean. United Nations Environment Programme. https://www.unep.org/ietc/resources/publication/waste-management-outlook-latin-america-and-caribbean
  • UNEP. (2024). Global waste management outlook 2024. United Nations Environment Programme.
  • Wael, M. S., Hamada, R. B., Mamoudou, S., Simpson, C. R., El-Maged, T. A. A., Rady, M. M., Nelson, S. D., (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333–347. https://doi.org/10.1016/j.sajb.2019.01.015
  • Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860. https://doi.org/10.1007/s00253-009-2246-7
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(5), 56. https://doi.org/10.1038/ncomms1053
  • Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., & Chang, A. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice-growing cycles. Field Crops Research, 127, 153–160. https://doi.org/10.1016/j.fcr.2011.11.020
  • Zhao, N., Teng, J., & Chen, Y. (2018). Current situation and analysis of agriculture waste management in China. World Environment, 4, 44–47.
  • Zhu, N., Deng, C., Xiong, Y., & Qian, H. (2004). Performance characteristics of three aeration systems in the swine manure composting. Bioresource Technology, 95(3), 319–326. https://doi.org/10.1016/j.biortech.2004.02.021
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Derleme Makalesi
Yazarlar

Alper Erdem Yılmaz 0000-0002-0666-7653

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 19 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

APA Yılmaz, A. E. (2025). Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi. Journal of Ecological Harmony, 1(1), 32-39. https://doi.org/10.5281/zenodo.15754960
AMA Yılmaz AE. Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi. Journal of Ecological Harmony. Haziran 2025;1(1):32-39. doi:10.5281/zenodo.15754960
Chicago Yılmaz, Alper Erdem. “Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi”. Journal of Ecological Harmony 1, sy. 1 (Haziran 2025): 32-39. https://doi.org/10.5281/zenodo.15754960.
EndNote Yılmaz AE (01 Haziran 2025) Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi. Journal of Ecological Harmony 1 1 32–39.
IEEE A. E. Yılmaz, “Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi”, Journal of Ecological Harmony, c. 1, sy. 1, ss. 32–39, 2025, doi: 10.5281/zenodo.15754960.
ISNAD Yılmaz, Alper Erdem. “Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi”. Journal of Ecological Harmony 1/1 (Haziran2025), 32-39. https://doi.org/10.5281/zenodo.15754960.
JAMA Yılmaz AE. Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi. Journal of Ecological Harmony. 2025;1:32–39.
MLA Yılmaz, Alper Erdem. “Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi”. Journal of Ecological Harmony, c. 1, sy. 1, 2025, ss. 32-39, doi:10.5281/zenodo.15754960.
Vancouver Yılmaz AE. Çevresel Sürdürülebilirlik Açısından Tarımsal Atıkların Değerlendirilmesi. Journal of Ecological Harmony. 2025;1(1):32-9.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

33393