Araştırma Makalesi
BibTex RIS Kaynak Göster

An Ecological Approach to Urban Aquatic Ecosystems: Evaluating the Use of Yeşilırmak Delta Macrophytes in Artificial Floating Islands

Yıl 2025, Cilt: 7 Sayı: 3, 192 - 208, 30.12.2025
https://doi.org/10.53472/jenas.1819094

Öz

Growing concerns about the impacts of water pollution and the need for sustainable development have led to the exploration of various approaches to reduce nutrient enrichment, particularly in surface waters. Floating islands offer ecological solutions for reducing nutrient depletion in aquatic ecosystems, such as nitrogen and phosphorus, metal(oids), organic pollutants such as pesticides and pharmaceuticals, and current pollutants such as nano/microplastics. Selected macrophyte species in these systems contribute to water quality improvement by supporting physical filtration, biodegradation, and microbial activity in the root-rhizome zones. They also increase biodiversity in aquatic ecosystems. This study provides a general assessment of the concept, structure, and functions of natural and artificial floating islands, and presents examples of local aquatic plant species common in the region, which can be used in artificial floating islands within urban water systems in the Black Sea Region. Floating islands, home to aquatic plants (macrophytes) that play crucial roles in freshwater ecosystems, improve the ecological status of the water and offer potential advantages for a variety of applications, including wastewater and rainwater treatment. This article explores the potential of vejetated floating islands to enhance and improve the environment, addressing water pollution, one of the most pressing environmental problems, using an ecological approach.

Kaynakça

  • Awad, J., Brunetti, G., Juhasz, A., Williams, M., Navarro, D., Drigo, B., ... & Beecham, S. (2022). Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. Journal of Hazardous Materials, 429, 128326. https://doi.org/10.1016/j.jhazmat.2022.128326
  • Barco, A., & Borin, M. (2020). Ornamental plants for floating treatment wetlands: Preliminary results. Italian Journal of Agronomy, 15(2), 1602. https://doi.org/10.4081/ija.2020.1602
  • Bernardini, A., Salvatori, E., Guerrini, V., Fusaro, L., Canepari, S., & Manes, F. (2016). Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. International Journal of Phytoremediation, 18(1), 16-24. https://doi.org/10.1080/15226514.2015.1058327
  • Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: a critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484-498.https://doi.org/10.1016/j.jenvman.2019.02.064
  • Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Borin, M., & Salvato, M. (2012). Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering, 46, 34-42. http://dx.doi.org/10.1016/j.ecoleng.2012.04.034
  • Boynukisa, E., Schück, M., & Greger, M. (2023). Differences in metal accumulation from stormwater by three plant species growing in floating treatment wetlands in a cold climate. Water, Air, & Soil Pollution, 234(4), 235. https://doi.org/10.1007/s11270-023-06199-7
  • Bu, F., & Xu, X. (2013). Planted floating bed performance in treatment of eutrophic river water. Environmental Monitoring and Assessment, 185(11), 9651-9662. https://doi.org/10.1007/s10661-013-3280-6
  • Bulut, İ. (2012). Türkiye’nin Yüzen Adaları. Atatürk Üniversitesi Yayınları No:1005, Edebiyat Fakültesi Yayınları No:138, Araştırmalar Serisi No: 114, Erzurum.
  • Bulut, İ., Karapınar, B., & Özoğul, B. (2016). Karakuyu Gölü (Afyonkarahisar-Dinar) ve Yüzen Adaları. TÜCAUM Uluslararası Coğrafya Sempozyumu, Ankara.
  • Bulut, İ., Kopar, İ., & Zaman, M. (2013). Mezra Gölü (Kılıçkaya-Yusufeli-Artvin) ve Yüzen Adaları. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 50, 11-24.
  • Chang, N. B., Xuan, Z., Marimon, Z., Islam, K., & Wanielista, M. P. (2013). Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering, 54, 66-76.
  • Chang, Y., Cui, H., Huang, M., & He, Y. (2017). Artificial floating islands for water quality improvement. Environmental Reviews, 25(3), 350-357. https://doi.org/10.1139/er-2016-0038
  • Chen, Z., Sawyer, A. H., Lee, J., & Costa Jr, O. S. (2025). Effects of polyculture on nutrient removal from residential raw sewage using field-scale artificial floating islands. Journal of Environmental Management, 377, 124562. https://doi.org/10.1016/j.jenvman.2025.124562
  • Davis, L. M. M., Hidayati, N., Firdaus, A. M., Talib, C., Rini, D. S., Juhaeti, T., ... & Gunawan, I. (2023, June). Uptake and translocation of lead and cadmium in wild-found plant species from Bekasi and Karawang, West Java, for phytoremediation. In IOP Conference Series: Earth and Environmental Science (Vol. 1201, No. 1, p. 012070). IOP Publishing. https://doi.org/10.1088/1755-1315/1201/1/012070
  • De Stefani, G., Tocchetto, D., Salvato, M., & Borin, M. (2011). Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674(1), 157-167. https://doi.org/10.1007/s10750-011-0730-4
  • DeSorbo, C. R., Fair, J., Taylor, K., Hanson, W., Evers, D. C., Vogel, H. S., & Cooley, J. H. (2008). Guidelines for constructing and deploying Common Loon nesting rafts. Northeastern Naturalist, 15(1), 75-86. https://doi.org/10.1656/1092-6194(2008)15[75:GFCADC]2.0.CO;2
  • Dordio, A., Carvalho, A. P., Teixeira, D. M., Dias, C. B., & Pinto, A. P. (2010). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource Technology, 101(3), 886-892.
  • Duman, F., Cicek, M., & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology, 16(6), 457-463. https://doi.org/10.1007/s10646-007-0150-4
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • GBIF, 2025. GBIF—the Global Biodiversity Information Facility. https://www.gbif.org
  • Ghassemzadeh, F., Yousefzadeh, H., & Arbab‐Zavar, M. H. (2008). Arsenic phytoremediation by Phragmites australis: green technology. International Journal of Environmental Studies, 65(4), 587-594. https://doi.org/10.1080/00207230802273387
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • Harding, B. (2009). Biohaven floating islands, in landscape SA, 30-2. Biohaven floating islands, in landscape SA. Floating Island International, 30-32.
  • Headley, T., Tanner, C. C., & Council, A. R. (2006). Application of floating wetlands for enhanced for stormwater treatment: a review. Auckland, New Zealand: Auckland Regional Council.
  • Hu, G. J., Zhou, M., Hou, H. B., Zhu, X., & Zhang, W. H. (2010). An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecological Engineering, 36(10), 1448-1458. https://doi.org/10.1016/j.ecoleng.2010.06.026
  • Hubbard, R. K., Anderson, W. F., Newton, G. L., Ruter, J. M., & Wilson, J. P. (2011). Plant growth and elemental uptake by floating vegetation on a single-stage swine wastewater lagoon. Transactions of the ASABE, 54(3), 837-845. https://doi.org/10.13031/2013.37108
  • Hubbard, R. K., Gascho, G. J., & Newton, G. L. (2004). Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE, 47(6), 1963-1972.
  • Jana, B. B. (2023). Floating islands for urban resilience aquatic resources management in the tropics: win-win-win strategies for eutrophication control, aquafarming and waterborne green transport system. International Journal of Oceanography & Aquaculture, 7(4): 000288. https://doi.org/10.23880/ijoac-16000288
  • Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environmental Technology & Innovation, 13, 264-276. https://doi.org/10.1016/j.eti.2018.12.007
  • Jeke, N. N., Hassan, A. O., & Zvomuya, F. (2017). Phytoremediation of biosolids from an end-of-life municipal lagoon using cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.). International Journal of Phytoremediation, 19(3), 270-280. https://doi.org/10.1080/15226514.2016.1225279
  • Kabenge, I., Ouma, G., Aboagye, D., & Banadda, N. (2018). Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management. Environmental Science and Pollution Research, 25(36), 36765-36774. https://doi.org/10.1007/s11356-018-3580-z
  • Karstens, S., Langer, M., Nyunoya, H., Čaraitė, I., Stybel, N., Razinkovas-Baziukas, A., & Bochert, R. (2021). Constructed floating wetlands made of natural materials as habitats in eutrophicated coastal lagoons in the Southern Baltic Sea. Journal of Coastal Conservation, 25(4), 44. https://doi.org/10.1007/s11852-021-00826-3
  • Kaur, D., Singh, A., Kumar, A., & Gupta, S. (2020). Genetic engineering approaches and applicability for the bioremediation of metalloids. In Plant Life Under Changing Environment (pp. 207-235), Academic Press.
  • Keizer-Vlek, H. E., Verdonschot, P. F., Verdonschot, R. C., & Dekkers, D. (2014). The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering, 73, 684-690. http://dx.doi.org/10.1016/j.ecoleng.2014.09.081
  • Kong, L., Wang, L., Wang, Q., Mei, R., & Yang, Y. (2019). Study on new artificial floating island removing pollutants. Environmental Science and Pollution Research, 26(17), 17751-17761. https://doi.org/10.1007/s11356-019-05164-4
  • Krokaitė, E., Jocienė, L., Shakeneva, D., Rekašius, T., Valiulis, D., & Kupčinskienė, E. (2023). Ionome of Lithuanian populations of purple loosestrife (Lythrum salicaria) and its relation to genetic diversity and environmental variables. Diversity, 15(3), 418. https://doi.org/10.3390/d15030418
  • Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80-86. http://dx.doi.org/10.1016/j.ecoenv.2014.10.034
  • Kwon, K. J., Choi, J., Kim, S. Y., Jeong, N. R., & Park, B. J. (2021). Growth and physiological responses of three landscape plants to calcium chloride. Sustainability, 13(10), 5429. https://doi.org/10.3390/su13105429
  • Lange, K., Magnusson, K., Viklander, M., & Blecken, G. T. (2021). Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap-bioretention treatment train. Water Research, 202, 117457. https://doi.org/10.1016/j.watres.2021.117457
  • Li, H., Hao, H., Yang, X., Xiang, L., Zhao, F., Jiang, H., & He, Z. (2012). Purification of refinery wastewater by different perennial grasses growing in a floating bed. Journal of Plant Nutrition, 35(1), 93-110. https://doi.org/10.1080/01904167.2012.631670
  • Li, X. N., Song, H. L., Li, W., Lu, X. W., & Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering, 36(4), 382-390. https://doi.org/10.1016/j.ecoleng.2009.11.004
  • Licht, L. A., & Isebrands, J. G. (2005). Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass and Bioenergy, 28(2), 203-218. https://doi.org/10.1016/j.biombioe.2004.08.015
  • Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17, 84-96. https://doi.org/10.1007/s11356-008-0094-0
  • McAndrew, B., Ahn, C., & Spooner, J. (2016). Nitrogen and sediment capture of a floating treatment wetland on an urban stormwater retention pond—the case of the rain project. Sustainability, 8(10), 972. https://doi.org/10.3390/su8100972
  • McKercher, L. J., Messer, T. L., Mittelstet, A. R., & Comfort, S. D. (2022). A biological and chemical approach to restoring water quality: A case study in an urban eutrophic pond. Journal of Environmental Management, 318, 115463. https://doi.org/10.1016/j.jenvman.2022.115463
  • Meuleman, A. F., Beekman, J., & Verhoeven, J. T. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands, 22(4), 712-721. https://doi.org/10.11672/0277-5212
  • Mohsin, M., Nawrot, N., Wojciechowska, E., Kuittinen, S., Szczepańska, K., Dembska, G., & Pappinen, A. (2023). Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation. Journal of Environmental Management, 331, 11733. https://doi.org/10.1016/j.jenvman.2023.117339
  • Naghoum, I., Edahbi, M., Melián, J. A. H., Doña Rodriguez, J. M., Durães, N., Pascual, B. A., & Salmoun, F. (2025). Passive treatment of acid mine drainage effluents using constructed wetlands: Case of an abandoned iron mine, Morocco. Water, 17(5), 687. https://doi.org/10.3390/w17050687
  • Nawrot, N., Wojciechowska, E., Pazdro, K., Szmagliński, J., & Pempkowiak, J. (2021). Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Science of the Total Environment, 768, 144983. https://doi.org/10.1016/j.scitotenv.2021.144983
  • Nduwimana, A., Yang, X. L., & Wang, L. R. (2007). Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter. Journal of Environmental Sciences, 19(9), 1079-1085. https://doi.org/10.1016/S1001-0742(07)60176-4
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Al-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209, 21-32. https://doi.org/10.1016/j.micres.2018.02.003
  • Otunola, B. O., Aghoghovwia, M. P., Thwala, M., Gómez-Arias, A., Jordaan, R., Hernandez, J. C., & Ololade, O. O. (2023). Improving capacity for phytoremediation of Vetiver grass and Indian mustard in heavy metal (Al and Mn) contaminated water through the application of clay minerals. Environmental Science and Pollution Research, 30(18), 53577-53588. https://doi.org/10.1007/s11356-023-26083-5
  • Owano, N. (2012). Maldives floating island masterplan tests the waters. Phys.org. http://phys.org/news/2012-08-maldives-island-masterplan.html〉
  • Packer, J. G., Meyerson, L. A., Skálová, H., Pyšek, P., & Kueffer, C. (2017). Biological flora of the British Isles: Phragmites australis. Journal of Ecology, 105(4), 1123-1162. https://doi.org/10.1111/1365-2745.12797
  • Pai, A., & McCarthy, B. C. (2010). Suitability of the medicinal plant, Acorus calamus L., for wetland restoration. Natural Areas Journal, 30(4), 380-386. https://doi.org/10.3375/043.030.0402
  • Panja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22(7), 764-773. https://doi.org/10.1080/15226514.2019.1710813
  • Pavlineri, N., Skoulikidis, N. T., & Tsihrintzis, V. A. (2017). Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chemical Engineering Journal, 308, 1120-1132. http://dx.doi.org/10.1016/j.cej.2016.09.140
  • Prashant, & Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Qiu, L., Li, J., Yu, P., Ma, H., Li, D., & Wang, A. (2023). Study on seasonal floating treatment wetland combination water purification based on numerical simulation. Journal of Water Process Engineering, 56, 104305. https://doi.org/10.1016/j.jwpe.2023.104305
  • Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83(5), 633-646. https://doi.org/10.1016/j.chemosphere.2011.02.045
  • Rana, V., & Maiti, S. K. (2020). Municipal and industrial wastewater treatment using constructed wetlands. Phytoremediation: In-situ Applications, 329-367. https://doi.org/10.1007/978-3-030-00099-8_10
  • Rehman, K., Imran, A., Amin, I., & Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242-251. https://doi.org/10.1016/j.jhazmat.2018.02.013
  • Schück, M., & Greger, M. (2020). Screening the capacity of 34 wetland plant species to remove heavy metals from water. International Journal of Environmental Research and Public Health, 17(13), 4623. https://doi.org/10.3390/ijerph17134623
  • Shealer, D. A., Buzzell, J. M., & Heiar, J. P. (2006). Effect of floating nest platforms on the breeding performance of Black Terns. Journal of Field Ornithology, 77(2), 184-194. https://doi.org/10.1111/j.1557-9263.2006.00040.x
  • Sricoth, T., Meeinkuirt, W., Pichtel, J., Taeprayoon, P., & Saengwilai, P. (2018). Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environmental Science and Pollution Research, 25(6), 5344-5358. https://doi.org/10.1007/s11356-017-0813-5
  • Sun, H., Wang, Z., Gao, P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35(2), 355-364. https://doi.org/10.1007/s11738-012-1078-8
  • L., Liu, J., Zhao, H., Wang, Z., Liu, X., Chang, Y., & Yao, D. (2022). Phytoremediation performance of three traditional ornamental hydrophytes and the structure of their rhizosphere microorganism populations. Environmental Science and Pollution Research, 29(33), 50727-50741. https://doi.org/10.1007/s11356-022-19543-x
  • Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environmental monitoring and assessment, 165, 103-112. https://doi.org/10.1007/s10661-009-0930-9
  • Tanner, C. C., & Headley, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3), 474-486. https://doi.org/10.1016/j.ecoleng
  • Taş, B. (2011). Bloom and eutrophication of Hydrodictyon reticulatum (Chlorophyceae) at Civil and Kacalı Stream, Ordu, Turkey. EEST Part A: Energy Science and Research, 28(1), 319-330.
  • Tao, G., Zhang, Z., Sun, S., & Zheng, Y. (2025). The impact of Acorus calamus on the removal of cadmium-sulfamethoxazole combined pollution in wetlands and its physiological and biochemical responses. Discover Applied Sciences, 7(6), 543. https://doi.org/10.1007/s42452-025-07100-3
  • Tanwir, K., Javed, M. T., Shahid, M., Akram, M. S., & Ali, Q. (2021). Antioxidant defense systems in bioremediation of organic pollutants. In Handbook of Bioremediation (pp. 505-521), Academic Press.
  • Van de Moortel, A. M., Meers, E., De Pauw, N., & Tack, F. M. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, & Soil Pollution, 212(1), 281-297. https://doi.org/10.1007/s11270-010-0342-z
  • Van Oostrom, A. J. (1995). Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Science and Technology, 32(3), 137-147. https://doi.org/10.1016/0273-1223(95)00614-1
  • Vijuksungsith, P., Satapanajaru, T., Muangkaew, K., & Boonprasert, R. (2024). Performance of bioretention systems by umbrella plant (Cyperus alternifolius L.) and common reed (Phragmites australis) for removal of microplastics. Environmental Technology & Innovation, 35, 103734. https://doi.org/10.1016/j.eti.2024.103734
  • Van Oostrom, A. J. (1995). Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Science and Technology, 32(3), 137-147. https://doi.org/10.1016/0273-1223(95)00614-1
  • Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582-592. http://dx.doi.org/10.1016/j.ecoleng.2013.06.023
  • Wang, C. Y., & Sample, D. J. (2014). Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. Journal of Environmental Management, 137, 23-35. https://doi.org/10.1016/j.jenvman.2014.02.008
  • Wang, C. Y., Sample, D. J., Day, S. D., & Grizzard, T. J. (2015). Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, 78, 15-26. https://doi.org/10.1016/j.ecoleng.2014.05.018
  • Wang, L., Gao, Y., Jiang, W., Chen, J., Chen, Y., Zhang, X., & Wang, G. (2021). Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere, 266, 128979. https://doi.org/10.1016/j.chemosphere.2020.128979
  • Wang, S. (2022). The distribution pattern and ecological restoration technology of aquatic plants in a eutrophic water landscape belt. Water Supply, 22(1), 860-873. https://doi.org/10.2166/ws.2021.230
  • Wei, Z., Sixi, Z., Xiuqing, Y., Guodong, X., Baichun, W., & Baojing, G. (2023). Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicology and Environmental Safety, 253, 114652. https://doi.org/10.1016/j.ecoenv.2023.114652
  • White, S. A., & Cousins, M. M. (2013). Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering, 61, 207-215. https://doi.org/10.1016/j.ecoleng.2013.09.020
  • Williamson, L. C., Ribrioux, S. P., Fitter, A. H., & Leyser, H. O. (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126(2), 875-882. https://doi.org/10.1104/pp.126.2.875
  • Wu, H., Zhang, J., Li, P., Zhang, J., Xie, H., & Zhang, B. (2011). Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecological Engineering, 37(4), 560-568. https://doi.org/10.1016/j.ecoleng.2010.11.020
  • Xiao, H., Jia, J., Chu, Q., & Liu, L. (2021). Effect of river ecological restoration by symbiotic system of aquatic plants. In IOP Conference Series: Earth and Environmental Science (Vol. 621, No. 1, p. 012086), IOP Publishing.
  • Xu, Q., Renault, S., & Yuan, Q. (2019). Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. International Journal of Phytoremediation, 21(9), 831-839. https://doi.org/10.1080/15226514.2019.1568383
  • Yeh, N., Yeh, P., & Chang, Y. H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616-622. https://doi.org/10.1016/j.rser.2015.03.090
  • Yousefi, Z., & Mohseni-Bandpei, A. (2010). Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecological Engineering, 36(6), 777-782. https://doi.org/10.1016/j.ecoleng.2010.02.002
  • Zhang, F., Peng, J., Rong, Y., Sun, S., & Zheng, Y. (2023). Removal of atrazine from submerged soil using vetiver grass (Chrysopogon zizanioides L.). International Journal of Phytoremediation, 25(5), 670-678. https://doi.org/10.1080/15226514.2022.2103091
  • Zhang, X. B., & Peng, L. I. U. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of Environmental Sciences, 19(8), 902-909. https://doi.org/10.1016/S1001-0742(07)60150-8
  • Zhang, Y., Lv, T., Carvalho, P. N., Arias, C. A., Chen, Z., & Brix, H. (2016). Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research, 23(3), 2890-2898. https://doi.org/10.1007/s11356-015-5552-x
  • Zhao, F., Xi, S., Yang, X., Yang, W., Li, J., Gu, B., & He, Z. (2012). Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering, 40, 53-60. https://doi.org/10.1016/j.ecoleng.2011.12.012
  • Zhong, L., Wu, T., Sun, H. J., Ding, J., Pang, J. W., Zhang, L., ... & Yang, S. S. (2023). Recent advances towards micro (nano) plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts. Journal of Hazardous Materials, 452, 131341. https://doi.org/10.1016/j.jhazmat.2023.131341
  • Zhou, X., Wang, G., & Yang, F. (2012). Nitrogen removal from eutrophic river waters by using Rumex acetosa cultivated in ecological floating beds. Fresenius Environmental Bulletin, 21(7a), 1920-1928.
  • Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecological Engineering, 37(10), 1460-1466. https://doi.org/10.1016/j.ecoleng.2011.03.010
  • Zinicovscaia, I., Svozilíková Krakovská, A., Yushin, N., Peshkova, A., & Grozdov, D. (2025). Phytoremediation of zinc-contaminated industrial effluents with Phragmites australis and Typha latifolia in constructed wetlands. Water, 17(16), 2358. https://doi.org/10.3390/w17162358

Kentiçi Sucul Ekosistemlerde Ekolojik Bir Yaklaşım: Yapay Yüzen Adalarda Yeşilırmak Deltası Makrofitlerinin Kullanımının Değerlendirilmesi

Yıl 2025, Cilt: 7 Sayı: 3, 192 - 208, 30.12.2025
https://doi.org/10.53472/jenas.1819094

Öz

Su kirliliğinin etkilerine ilişkin artan endişeler ve sürdürülebilir kalkınma ihtiyacı, özellikle yüzey sularındaki besin zenginleşmesini azaltmak için çeşitli yaklaşımların araştırılmasına yol açmıştır. Yüzen adalar, sucul ekosistemlerde azot, fosfor gibi besin elementlerinin, metal(oid)lerin, pestisit, farmasötik gibi organik kirleticilerin ve nano/mikroplastikler gibi güncel pollutantların azaltılmasında ekolojik çözümler sunar. Bu sistemlerde seçilen makrofit türleri, kök-rizom bölgelerinde fiziksel filtrasyon, biyolojik parçalanma ve mikrobiyal aktiviteyi destekleyerek su kalitesinin iyileştirilmesine katkı sağlar. Aynı zamanda sucul ekosistemde biyolojik çeşitliliği artırır. Bu araştırmada, doğal ve yapay yüzen ada kavramı, yapısı ve işlevleri hakkında genel bir değerlendirme yapılıp, Karadeniz Bölgesi’ndeki kent içi su sistemlerinde kurulabilecek yapay yüzen adalarda bölgemizde yaygın bulunan yerel sucul bitki türlerinden örnekler sunularak değerlendirilmiştir. Tatlı su ekosistemlerinde çok önemli işlevleri olan sucul bitkilerin (makrofitler) bulunduğu yüzen adalar, suyun ekolojik durumunu iyileştirirken, atık su ve yağmur suyu arıtımını da içeren çeşitli uygulamalar için potansiyel avantajlara sahiptir. Bu makale en önemli çevre sorunlarının başında gelen su kirliliğini ekolojik bir yaklaşımla çözmek için bitki örtülü yüzen adaların çevreyi iyileştirme ve geliştirme potansiyelini gündeme getirmektedir.

Kaynakça

  • Awad, J., Brunetti, G., Juhasz, A., Williams, M., Navarro, D., Drigo, B., ... & Beecham, S. (2022). Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. Journal of Hazardous Materials, 429, 128326. https://doi.org/10.1016/j.jhazmat.2022.128326
  • Barco, A., & Borin, M. (2020). Ornamental plants for floating treatment wetlands: Preliminary results. Italian Journal of Agronomy, 15(2), 1602. https://doi.org/10.4081/ija.2020.1602
  • Bernardini, A., Salvatori, E., Guerrini, V., Fusaro, L., Canepari, S., & Manes, F. (2016). Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. International Journal of Phytoremediation, 18(1), 16-24. https://doi.org/10.1080/15226514.2015.1058327
  • Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: a critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484-498.https://doi.org/10.1016/j.jenvman.2019.02.064
  • Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Borin, M., & Salvato, M. (2012). Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering, 46, 34-42. http://dx.doi.org/10.1016/j.ecoleng.2012.04.034
  • Boynukisa, E., Schück, M., & Greger, M. (2023). Differences in metal accumulation from stormwater by three plant species growing in floating treatment wetlands in a cold climate. Water, Air, & Soil Pollution, 234(4), 235. https://doi.org/10.1007/s11270-023-06199-7
  • Bu, F., & Xu, X. (2013). Planted floating bed performance in treatment of eutrophic river water. Environmental Monitoring and Assessment, 185(11), 9651-9662. https://doi.org/10.1007/s10661-013-3280-6
  • Bulut, İ. (2012). Türkiye’nin Yüzen Adaları. Atatürk Üniversitesi Yayınları No:1005, Edebiyat Fakültesi Yayınları No:138, Araştırmalar Serisi No: 114, Erzurum.
  • Bulut, İ., Karapınar, B., & Özoğul, B. (2016). Karakuyu Gölü (Afyonkarahisar-Dinar) ve Yüzen Adaları. TÜCAUM Uluslararası Coğrafya Sempozyumu, Ankara.
  • Bulut, İ., Kopar, İ., & Zaman, M. (2013). Mezra Gölü (Kılıçkaya-Yusufeli-Artvin) ve Yüzen Adaları. Atatürk Üniversitesi Sosyal Bilimler Dergisi, 50, 11-24.
  • Chang, N. B., Xuan, Z., Marimon, Z., Islam, K., & Wanielista, M. P. (2013). Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering, 54, 66-76.
  • Chang, Y., Cui, H., Huang, M., & He, Y. (2017). Artificial floating islands for water quality improvement. Environmental Reviews, 25(3), 350-357. https://doi.org/10.1139/er-2016-0038
  • Chen, Z., Sawyer, A. H., Lee, J., & Costa Jr, O. S. (2025). Effects of polyculture on nutrient removal from residential raw sewage using field-scale artificial floating islands. Journal of Environmental Management, 377, 124562. https://doi.org/10.1016/j.jenvman.2025.124562
  • Davis, L. M. M., Hidayati, N., Firdaus, A. M., Talib, C., Rini, D. S., Juhaeti, T., ... & Gunawan, I. (2023, June). Uptake and translocation of lead and cadmium in wild-found plant species from Bekasi and Karawang, West Java, for phytoremediation. In IOP Conference Series: Earth and Environmental Science (Vol. 1201, No. 1, p. 012070). IOP Publishing. https://doi.org/10.1088/1755-1315/1201/1/012070
  • De Stefani, G., Tocchetto, D., Salvato, M., & Borin, M. (2011). Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674(1), 157-167. https://doi.org/10.1007/s10750-011-0730-4
  • DeSorbo, C. R., Fair, J., Taylor, K., Hanson, W., Evers, D. C., Vogel, H. S., & Cooley, J. H. (2008). Guidelines for constructing and deploying Common Loon nesting rafts. Northeastern Naturalist, 15(1), 75-86. https://doi.org/10.1656/1092-6194(2008)15[75:GFCADC]2.0.CO;2
  • Dordio, A., Carvalho, A. P., Teixeira, D. M., Dias, C. B., & Pinto, A. P. (2010). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource Technology, 101(3), 886-892.
  • Duman, F., Cicek, M., & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology, 16(6), 457-463. https://doi.org/10.1007/s10646-007-0150-4
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • GBIF, 2025. GBIF—the Global Biodiversity Information Facility. https://www.gbif.org
  • Ghassemzadeh, F., Yousefzadeh, H., & Arbab‐Zavar, M. H. (2008). Arsenic phytoremediation by Phragmites australis: green technology. International Journal of Environmental Studies, 65(4), 587-594. https://doi.org/10.1080/00207230802273387
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • Harding, B. (2009). Biohaven floating islands, in landscape SA, 30-2. Biohaven floating islands, in landscape SA. Floating Island International, 30-32.
  • Headley, T., Tanner, C. C., & Council, A. R. (2006). Application of floating wetlands for enhanced for stormwater treatment: a review. Auckland, New Zealand: Auckland Regional Council.
  • Hu, G. J., Zhou, M., Hou, H. B., Zhu, X., & Zhang, W. H. (2010). An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecological Engineering, 36(10), 1448-1458. https://doi.org/10.1016/j.ecoleng.2010.06.026
  • Hubbard, R. K., Anderson, W. F., Newton, G. L., Ruter, J. M., & Wilson, J. P. (2011). Plant growth and elemental uptake by floating vegetation on a single-stage swine wastewater lagoon. Transactions of the ASABE, 54(3), 837-845. https://doi.org/10.13031/2013.37108
  • Hubbard, R. K., Gascho, G. J., & Newton, G. L. (2004). Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE, 47(6), 1963-1972.
  • Jana, B. B. (2023). Floating islands for urban resilience aquatic resources management in the tropics: win-win-win strategies for eutrophication control, aquafarming and waterborne green transport system. International Journal of Oceanography & Aquaculture, 7(4): 000288. https://doi.org/10.23880/ijoac-16000288
  • Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environmental Technology & Innovation, 13, 264-276. https://doi.org/10.1016/j.eti.2018.12.007
  • Jeke, N. N., Hassan, A. O., & Zvomuya, F. (2017). Phytoremediation of biosolids from an end-of-life municipal lagoon using cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.). International Journal of Phytoremediation, 19(3), 270-280. https://doi.org/10.1080/15226514.2016.1225279
  • Kabenge, I., Ouma, G., Aboagye, D., & Banadda, N. (2018). Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management. Environmental Science and Pollution Research, 25(36), 36765-36774. https://doi.org/10.1007/s11356-018-3580-z
  • Karstens, S., Langer, M., Nyunoya, H., Čaraitė, I., Stybel, N., Razinkovas-Baziukas, A., & Bochert, R. (2021). Constructed floating wetlands made of natural materials as habitats in eutrophicated coastal lagoons in the Southern Baltic Sea. Journal of Coastal Conservation, 25(4), 44. https://doi.org/10.1007/s11852-021-00826-3
  • Kaur, D., Singh, A., Kumar, A., & Gupta, S. (2020). Genetic engineering approaches and applicability for the bioremediation of metalloids. In Plant Life Under Changing Environment (pp. 207-235), Academic Press.
  • Keizer-Vlek, H. E., Verdonschot, P. F., Verdonschot, R. C., & Dekkers, D. (2014). The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering, 73, 684-690. http://dx.doi.org/10.1016/j.ecoleng.2014.09.081
  • Kong, L., Wang, L., Wang, Q., Mei, R., & Yang, Y. (2019). Study on new artificial floating island removing pollutants. Environmental Science and Pollution Research, 26(17), 17751-17761. https://doi.org/10.1007/s11356-019-05164-4
  • Krokaitė, E., Jocienė, L., Shakeneva, D., Rekašius, T., Valiulis, D., & Kupčinskienė, E. (2023). Ionome of Lithuanian populations of purple loosestrife (Lythrum salicaria) and its relation to genetic diversity and environmental variables. Diversity, 15(3), 418. https://doi.org/10.3390/d15030418
  • Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80-86. http://dx.doi.org/10.1016/j.ecoenv.2014.10.034
  • Kwon, K. J., Choi, J., Kim, S. Y., Jeong, N. R., & Park, B. J. (2021). Growth and physiological responses of three landscape plants to calcium chloride. Sustainability, 13(10), 5429. https://doi.org/10.3390/su13105429
  • Lange, K., Magnusson, K., Viklander, M., & Blecken, G. T. (2021). Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap-bioretention treatment train. Water Research, 202, 117457. https://doi.org/10.1016/j.watres.2021.117457
  • Li, H., Hao, H., Yang, X., Xiang, L., Zhao, F., Jiang, H., & He, Z. (2012). Purification of refinery wastewater by different perennial grasses growing in a floating bed. Journal of Plant Nutrition, 35(1), 93-110. https://doi.org/10.1080/01904167.2012.631670
  • Li, X. N., Song, H. L., Li, W., Lu, X. W., & Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering, 36(4), 382-390. https://doi.org/10.1016/j.ecoleng.2009.11.004
  • Licht, L. A., & Isebrands, J. G. (2005). Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass and Bioenergy, 28(2), 203-218. https://doi.org/10.1016/j.biombioe.2004.08.015
  • Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17, 84-96. https://doi.org/10.1007/s11356-008-0094-0
  • McAndrew, B., Ahn, C., & Spooner, J. (2016). Nitrogen and sediment capture of a floating treatment wetland on an urban stormwater retention pond—the case of the rain project. Sustainability, 8(10), 972. https://doi.org/10.3390/su8100972
  • McKercher, L. J., Messer, T. L., Mittelstet, A. R., & Comfort, S. D. (2022). A biological and chemical approach to restoring water quality: A case study in an urban eutrophic pond. Journal of Environmental Management, 318, 115463. https://doi.org/10.1016/j.jenvman.2022.115463
  • Meuleman, A. F., Beekman, J., & Verhoeven, J. T. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands, 22(4), 712-721. https://doi.org/10.11672/0277-5212
  • Mohsin, M., Nawrot, N., Wojciechowska, E., Kuittinen, S., Szczepańska, K., Dembska, G., & Pappinen, A. (2023). Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation. Journal of Environmental Management, 331, 11733. https://doi.org/10.1016/j.jenvman.2023.117339
  • Naghoum, I., Edahbi, M., Melián, J. A. H., Doña Rodriguez, J. M., Durães, N., Pascual, B. A., & Salmoun, F. (2025). Passive treatment of acid mine drainage effluents using constructed wetlands: Case of an abandoned iron mine, Morocco. Water, 17(5), 687. https://doi.org/10.3390/w17050687
  • Nawrot, N., Wojciechowska, E., Pazdro, K., Szmagliński, J., & Pempkowiak, J. (2021). Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Science of the Total Environment, 768, 144983. https://doi.org/10.1016/j.scitotenv.2021.144983
  • Nduwimana, A., Yang, X. L., & Wang, L. R. (2007). Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter. Journal of Environmental Sciences, 19(9), 1079-1085. https://doi.org/10.1016/S1001-0742(07)60176-4
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Al-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209, 21-32. https://doi.org/10.1016/j.micres.2018.02.003
  • Otunola, B. O., Aghoghovwia, M. P., Thwala, M., Gómez-Arias, A., Jordaan, R., Hernandez, J. C., & Ololade, O. O. (2023). Improving capacity for phytoremediation of Vetiver grass and Indian mustard in heavy metal (Al and Mn) contaminated water through the application of clay minerals. Environmental Science and Pollution Research, 30(18), 53577-53588. https://doi.org/10.1007/s11356-023-26083-5
  • Owano, N. (2012). Maldives floating island masterplan tests the waters. Phys.org. http://phys.org/news/2012-08-maldives-island-masterplan.html〉
  • Packer, J. G., Meyerson, L. A., Skálová, H., Pyšek, P., & Kueffer, C. (2017). Biological flora of the British Isles: Phragmites australis. Journal of Ecology, 105(4), 1123-1162. https://doi.org/10.1111/1365-2745.12797
  • Pai, A., & McCarthy, B. C. (2010). Suitability of the medicinal plant, Acorus calamus L., for wetland restoration. Natural Areas Journal, 30(4), 380-386. https://doi.org/10.3375/043.030.0402
  • Panja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22(7), 764-773. https://doi.org/10.1080/15226514.2019.1710813
  • Pavlineri, N., Skoulikidis, N. T., & Tsihrintzis, V. A. (2017). Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chemical Engineering Journal, 308, 1120-1132. http://dx.doi.org/10.1016/j.cej.2016.09.140
  • Prashant, & Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Qiu, L., Li, J., Yu, P., Ma, H., Li, D., & Wang, A. (2023). Study on seasonal floating treatment wetland combination water purification based on numerical simulation. Journal of Water Process Engineering, 56, 104305. https://doi.org/10.1016/j.jwpe.2023.104305
  • Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83(5), 633-646. https://doi.org/10.1016/j.chemosphere.2011.02.045
  • Rana, V., & Maiti, S. K. (2020). Municipal and industrial wastewater treatment using constructed wetlands. Phytoremediation: In-situ Applications, 329-367. https://doi.org/10.1007/978-3-030-00099-8_10
  • Rehman, K., Imran, A., Amin, I., & Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242-251. https://doi.org/10.1016/j.jhazmat.2018.02.013
  • Schück, M., & Greger, M. (2020). Screening the capacity of 34 wetland plant species to remove heavy metals from water. International Journal of Environmental Research and Public Health, 17(13), 4623. https://doi.org/10.3390/ijerph17134623
  • Shealer, D. A., Buzzell, J. M., & Heiar, J. P. (2006). Effect of floating nest platforms on the breeding performance of Black Terns. Journal of Field Ornithology, 77(2), 184-194. https://doi.org/10.1111/j.1557-9263.2006.00040.x
  • Sricoth, T., Meeinkuirt, W., Pichtel, J., Taeprayoon, P., & Saengwilai, P. (2018). Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environmental Science and Pollution Research, 25(6), 5344-5358. https://doi.org/10.1007/s11356-017-0813-5
  • Sun, H., Wang, Z., Gao, P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35(2), 355-364. https://doi.org/10.1007/s11738-012-1078-8
  • L., Liu, J., Zhao, H., Wang, Z., Liu, X., Chang, Y., & Yao, D. (2022). Phytoremediation performance of three traditional ornamental hydrophytes and the structure of their rhizosphere microorganism populations. Environmental Science and Pollution Research, 29(33), 50727-50741. https://doi.org/10.1007/s11356-022-19543-x
  • Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environmental monitoring and assessment, 165, 103-112. https://doi.org/10.1007/s10661-009-0930-9
  • Tanner, C. C., & Headley, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3), 474-486. https://doi.org/10.1016/j.ecoleng
  • Taş, B. (2011). Bloom and eutrophication of Hydrodictyon reticulatum (Chlorophyceae) at Civil and Kacalı Stream, Ordu, Turkey. EEST Part A: Energy Science and Research, 28(1), 319-330.
  • Tao, G., Zhang, Z., Sun, S., & Zheng, Y. (2025). The impact of Acorus calamus on the removal of cadmium-sulfamethoxazole combined pollution in wetlands and its physiological and biochemical responses. Discover Applied Sciences, 7(6), 543. https://doi.org/10.1007/s42452-025-07100-3
  • Tanwir, K., Javed, M. T., Shahid, M., Akram, M. S., & Ali, Q. (2021). Antioxidant defense systems in bioremediation of organic pollutants. In Handbook of Bioremediation (pp. 505-521), Academic Press.
  • Van de Moortel, A. M., Meers, E., De Pauw, N., & Tack, F. M. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, & Soil Pollution, 212(1), 281-297. https://doi.org/10.1007/s11270-010-0342-z
  • Van Oostrom, A. J. (1995). Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Science and Technology, 32(3), 137-147. https://doi.org/10.1016/0273-1223(95)00614-1
  • Vijuksungsith, P., Satapanajaru, T., Muangkaew, K., & Boonprasert, R. (2024). Performance of bioretention systems by umbrella plant (Cyperus alternifolius L.) and common reed (Phragmites australis) for removal of microplastics. Environmental Technology & Innovation, 35, 103734. https://doi.org/10.1016/j.eti.2024.103734
  • Van Oostrom, A. J. (1995). Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Science and Technology, 32(3), 137-147. https://doi.org/10.1016/0273-1223(95)00614-1
  • Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582-592. http://dx.doi.org/10.1016/j.ecoleng.2013.06.023
  • Wang, C. Y., & Sample, D. J. (2014). Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. Journal of Environmental Management, 137, 23-35. https://doi.org/10.1016/j.jenvman.2014.02.008
  • Wang, C. Y., Sample, D. J., Day, S. D., & Grizzard, T. J. (2015). Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, 78, 15-26. https://doi.org/10.1016/j.ecoleng.2014.05.018
  • Wang, L., Gao, Y., Jiang, W., Chen, J., Chen, Y., Zhang, X., & Wang, G. (2021). Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere, 266, 128979. https://doi.org/10.1016/j.chemosphere.2020.128979
  • Wang, S. (2022). The distribution pattern and ecological restoration technology of aquatic plants in a eutrophic water landscape belt. Water Supply, 22(1), 860-873. https://doi.org/10.2166/ws.2021.230
  • Wei, Z., Sixi, Z., Xiuqing, Y., Guodong, X., Baichun, W., & Baojing, G. (2023). Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicology and Environmental Safety, 253, 114652. https://doi.org/10.1016/j.ecoenv.2023.114652
  • White, S. A., & Cousins, M. M. (2013). Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering, 61, 207-215. https://doi.org/10.1016/j.ecoleng.2013.09.020
  • Williamson, L. C., Ribrioux, S. P., Fitter, A. H., & Leyser, H. O. (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126(2), 875-882. https://doi.org/10.1104/pp.126.2.875
  • Wu, H., Zhang, J., Li, P., Zhang, J., Xie, H., & Zhang, B. (2011). Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecological Engineering, 37(4), 560-568. https://doi.org/10.1016/j.ecoleng.2010.11.020
  • Xiao, H., Jia, J., Chu, Q., & Liu, L. (2021). Effect of river ecological restoration by symbiotic system of aquatic plants. In IOP Conference Series: Earth and Environmental Science (Vol. 621, No. 1, p. 012086), IOP Publishing.
  • Xu, Q., Renault, S., & Yuan, Q. (2019). Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. International Journal of Phytoremediation, 21(9), 831-839. https://doi.org/10.1080/15226514.2019.1568383
  • Yeh, N., Yeh, P., & Chang, Y. H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616-622. https://doi.org/10.1016/j.rser.2015.03.090
  • Yousefi, Z., & Mohseni-Bandpei, A. (2010). Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecological Engineering, 36(6), 777-782. https://doi.org/10.1016/j.ecoleng.2010.02.002
  • Zhang, F., Peng, J., Rong, Y., Sun, S., & Zheng, Y. (2023). Removal of atrazine from submerged soil using vetiver grass (Chrysopogon zizanioides L.). International Journal of Phytoremediation, 25(5), 670-678. https://doi.org/10.1080/15226514.2022.2103091
  • Zhang, X. B., & Peng, L. I. U. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of Environmental Sciences, 19(8), 902-909. https://doi.org/10.1016/S1001-0742(07)60150-8
  • Zhang, Y., Lv, T., Carvalho, P. N., Arias, C. A., Chen, Z., & Brix, H. (2016). Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research, 23(3), 2890-2898. https://doi.org/10.1007/s11356-015-5552-x
  • Zhao, F., Xi, S., Yang, X., Yang, W., Li, J., Gu, B., & He, Z. (2012). Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering, 40, 53-60. https://doi.org/10.1016/j.ecoleng.2011.12.012
  • Zhong, L., Wu, T., Sun, H. J., Ding, J., Pang, J. W., Zhang, L., ... & Yang, S. S. (2023). Recent advances towards micro (nano) plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts. Journal of Hazardous Materials, 452, 131341. https://doi.org/10.1016/j.jhazmat.2023.131341
  • Zhou, X., Wang, G., & Yang, F. (2012). Nitrogen removal from eutrophic river waters by using Rumex acetosa cultivated in ecological floating beds. Fresenius Environmental Bulletin, 21(7a), 1920-1928.
  • Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecological Engineering, 37(10), 1460-1466. https://doi.org/10.1016/j.ecoleng.2011.03.010
  • Zinicovscaia, I., Svozilíková Krakovská, A., Yushin, N., Peshkova, A., & Grozdov, D. (2025). Phytoremediation of zinc-contaminated industrial effluents with Phragmites australis and Typha latifolia in constructed wetlands. Water, 17(16), 2358. https://doi.org/10.3390/w17162358
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji, Tatlı Su Ekolojisi
Bölüm Araştırma Makalesi
Yazarlar

Beyhan Taş 0000-0001-6421-2561

Halim Topaldemir 0000-0002-4494-9715

Salih Uzuner 0000-0002-4840-1773

Gönderilme Tarihi 6 Kasım 2025
Kabul Tarihi 18 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Taş, B., Topaldemir, H., & Uzuner, S. (2025). Kentiçi Sucul Ekosistemlerde Ekolojik Bir Yaklaşım: Yapay Yüzen Adalarda Yeşilırmak Deltası Makrofitlerinin Kullanımının Değerlendirilmesi. JENAS Journal of Environmental and Natural Studies, 7(3), 192-208. https://doi.org/10.53472/jenas.1819094

JENAS | Journal of Environmental and Natural Studies