Derleme
BibTex RIS Kaynak Göster

Biochar as an Additive for Enhancement of Anaerobic Digestion Process

Yıl 2023, Cilt: 5 Sayı: 1, 1 - 27, 01.05.2023
https://doi.org/10.53472/jenas.1190980

Öz

The energy requirement of people is increasing in parallel with the increase in the world population. Since the beginning of industrialization, fossil resources such as oil, coal, and natural gas have been used mainly to meet the world's energy needs. However, it is predicted that these resources will reach a level that cannot meet the world's energy needs and will run out in the near future.
While meeting this increasing energy need of human beings, it is necessary to release greenhouse gases into the atmosphere and to prevent or reduce the adverse effects of greenhouse gases. This will only be possible using sustainable and renewable alternative energy sources that do not pollute the environment. Biomass is one of the prominent options among these alternative energy sources.
For biomass to be used as an energy source, it must be converted into a suitable material form. The pyrolysis method enables the conversion of biomass into value-added solid, liquid, and gaseous products. This study discusses the properties of biochar, a solid product produced by pyrolysis technology, its usage areas, and its effect mechanisms on the anaerobic digestion process.

Kaynakça

  • Abbas, Y., Yun, S., Wang, Z., Zhang, Y., Zhang, X., & Wang, K. (2021). Recent advances in bio-based carbon materials for anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 135, 110378. https://doi.org/10.1016/J.RSER.2020.110378
  • Ahmed, M. J., & Hameed, B. H. (2020). Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. Journal of Cleaner Production, 265, 121762. https://doi.org/10.1016/J.JCLEPRO.2020.121762
  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. https://doi.org/10.1016/J.BIORTECH.2012.12.165
  • Amonette, J. E., & Joseph, S. D. (2009). Characteristics of biochar: Microchemical properties. Biochar for Environmental Management. Retrieved from https://www.researchgate.net/publication/255216430_Characteristics_of_biochar_Microchemical_properties
  • Antón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., & Eymar, E. (2018). Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160, 162–172. https://doi.org/10.1016/J.CLAY.2017.12.023
  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18. https://doi.org/10.1007/S11104-010-0464-5
  • B, S. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews : MMBR, 61(2), 262–280. https://doi.org/10.1128/MMBR.61.2.262-280.1997
  • Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. (2011). Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry, 43(2), 296–301. https://doi.org/10.1016/J.SOILBIO.2010.10.014
  • Balajii, M., & Niju, S. (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 17(4), 1447–1469. https://doi.org/10.1007/S10311-019-00885-X
  • Bouallagui, H., Touhami, Y., Ben Cheikh, R., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3–4), 989–995. https://doi.org/10.1016/J.PROCBIO.2004.03.007
  • Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., & Antal, M. J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial and Engineering Chemistry Research, 46(18), 5954–5967. https://doi.org/10.1021/IE070415U
  • Cai, J., He, P., Wang, Y., Shao, L., & Lü, F. (2016). Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Management and Research, 34(5), 409–416. https://doi.org/10.1177/0734242X16634196
  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. https://doi.org/10.1016/J.BIORTECH.2011.11.084
  • Cao, Y., & Pawłowski, A. (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16(3), 1657–1665. https://doi.org/10.1016/J.RSER.2011.12.014
  • Cetin, E., Moghtaderi, B., Gupta, R., & Wall, T. F. (2004). Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 83(16), 2139–2150. https://doi.org/10.1016/J.FUEL.2004.05.008
  • Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. https://doi.org/10.1016/J.JIEC.2016.06.002
  • Chacón, F. J., Sánchez-Monedero, M. A., Lezama, L., & Cayuela, M. L. (2020). Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chemical Engineering Journal, 395, 125100. https://doi.org/10.1016/J.CEJ.2020.125100
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634. https://doi.org/10.1071/SR07109
  • Chen, S., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., … Lovley, D. R. (2014). Promoting interspecies electron transfer with biochar. Scientific Reports, 4. https://doi.org/10.1038/SREP05019
  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/J.BIORTECH.2007.01.057
  • Cheng, Q., De Los Reyes, F. L., & Call, D. F. (2018). Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environmental Science: Water Research & Technology, 4(11), 1794–1806. https://doi.org/10.1039/C8EW00447A
  • Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 39(4), 1218–1223. https://doi.org/10.2134/JEQ2010.0204
  • Dang, Y., Holmes, D. E., Zhao, Z., Woodard, T. L., Zhang, Y., Sun, D., … Lovley, D. R. (2016). Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresource Technology, 220, 516–522. https://doi.org/10.1016/J.BIORTECH.2016.08.114
  • De Vrieze, J., Devooght, A., Walraedt, D., & Boon, N. (2016). Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Applied Microbiology and Biotechnology, 100(11), 5177–5187. https://doi.org/10.1007/S00253-016-7503-Y
  • Deng, C., Lin, R., Kang, X., Wu, B., O’Shea, R., & Murphy, J. D. (2020). Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis. Renewable and Sustainable Energy Reviews, 128, 109895. https://doi.org/10.1016/J.RSER.2020.109895
  • Deng, Y., Dai, B., Xu, J., Liu, X., & Xu, J. (2018). Anaerobic co-digestion of rice straw and soybean straw to increase biogas production by pretreatment with trichoderma reesei RUT C30. Environmental Progress and Sustainable Energy, 37(3), 1050–1057. https://doi.org/10.1002/EP.12782
  • Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Ibeto, C. N., Li, H., Usmani, S. Q., & Semple, K. T. (2017). The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236–249. https://doi.org/10.1016/J.WASMAN.2016.11.028
  • Fidel, R. B., Laird, D. A., Thompson, M. L., & Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167, 367–373. https://doi.org/10.1016/J.CHEMOSPHERE.2016.09.151
  • Gabhi, R. S., Kirk, D. W., & Jia, C. Q. (2017). Preliminary investigation of electrical conductivity of monolithic biochar. Carbon, 116, 435–442. https://doi.org/10.1016/J.CARBON.2017.01.069
  • Gao, M., Zhang, L., & Liu, Y. (2020). High-loading food waste and blackwater anaerobic co-digestion: Maximizing bioenergy recovery. Chemical Engineering Journal, 394. https://doi.org/10.1016/J.CEJ.2020.124911
  • Giwa, A. S., Xu, H., Chang, F., Wu, J., Li, Y., Ali, N., … Wang, K. (2019). Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. Journal of Environmental Chemical Engineering, 7(4), 103067. https://doi.org/10.1016/J.JECE.2019.103067
  • Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35(2), 667–678. https://doi.org/10.1007/S13593-014-0251-4
  • Gopinath, K. P., Vo, D. V. N., Gnana Prakash, D., Adithya Joseph, A., Viswanathan, S., & Arun, J. (2021). Environmental applications of carbon-based materials: a review. Environmental Chemistry Letters, 19(1), 557–582. https://doi.org/10.1007/S10311-020-01084-9
  • Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure : inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7
  • He, J., Xiao, Y., Tang, J., Chen, H., & Sun, H. (2019). Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Science of The Total Environment, 690, 768–777. https://doi.org/10.1016/J.SCITOTENV.2019.07.043
  • Hejnfelt, A., & Angelidaki, I. (2009). Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy, 33(8), 1046–1054. https://doi.org/10.1016/J.BIOMBIOE.2009.03.004
  • Hopkins, D., & Hawboldt, K. (2020). Biochar for the removal of metals from solution: A review of lignocellulosic and novel marine feedstocks. Journal of Environmental Chemical Engineering, 8(4), 103975. https://doi.org/10.1016/J.JECE.2020.103975
  • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/EN5124952
  • JunTing, P., JunYi, M., Ling, Q., XiaoHui, G., & Gao, T. (2016). The performance of biochar-mediated anaerobic digestion of chicken manure. China Environmental Science, 36(9), 2716–2721. Retrieved from https://www.researchgate.net/publication/309115088_The_performance_of_biochar-mediated_anaerobic_digestion_of_chicken_manure
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/J.RSER.2015.01.050
  • Khalid, Z. Bin, Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. Bin, & Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4), 105489. https://doi.org/10.1016/J.JECE.2021.105489
  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43. https://doi.org/10.1016/J.BIOMBIOE.2012.01.033
  • Kosheleva, R. I., Mitropoulos, A. C., & Kyzas, G. Z. (2019). Synthesis of activated carbon from food waste. Environmental Chemistry Letters, 17(1), 429–438. https://doi.org/10.1007/S10311-018-0817-5
  • Koukouzas, N., Hämäläinen, J., Papanikolaou, D., Tourunen, A., & Jäntti, T. (2007). Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86(14), 2186–2193. https://doi.org/10.1016/J.FUEL.2007.03.036
  • Kumar, A. N., Dissanayake, P. D., Masek, O., Priya, A., Ki Lin, C. S., Ok, Y. S., & Kim, S. H. (2021). Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop. Renewable and Sustainable Energy Reviews, 149, 111371. https://doi.org/10.1016/J.RSER.2021.111371
  • Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547–562. https://doi.org/10.1002/BBB.169
  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44(20), 7970–7974. https://doi.org/10.1021/ES101337X
  • Lehmann, Johanne, & Joseph, S. (2015). Biochar for environmental management: an introduction. Biochar for Environmental Management, 1–13. https://doi.org/10.4324/9780203762264-1
  • Lehmann, Johannes, Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403–427. https://doi.org/10.1007/S11027-005-9006-5
  • Lenmann, J. (2007). Bio-Energy in the Black. Frontiers in Ecology and the Environment, 381–387. Retrieved from https://www.researchgate.net/publication/221899775_Bio-Energy_in_the_Black
  • Li, R., Liang, W., Wang, J. J., Gaston, L. A., Huang, D., Huang, H., … Zhang, Z. (2018). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212, 77–87. https://doi.org/10.1016/J.JENVMAN.2017.12.034
  • Lim, E. Y., Tian, H., Chen, Y., Ni, K., Zhang, J., & Tong, Y. W. (2020). Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresource Technology, 314, 123751. https://doi.org/10.1016/J.BIORTECH.2020.123751
  • Ling, L. L., Liu, W. J., Zhang, S., & Jiang, H. (2017). Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. Environmental Science and Technology, 51(17), 10081–10089. https://doi.org/10.1021/ACS.EST.7B02382/SUPPL_FILE/ES7B02382_SI_001.PDF
  • Liu, F., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., & Lovley, D. R. (2012). Promoting direct interspecies electron transfer with activated carbon. Energy and Environmental Science, 5(10), 8982–8989. https://doi.org/10.1039/C2EE22459C
  • Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/ACS.CHEMREV.5B00195
  • Lopez, R. J., Higgins, S. R., Pagaling, E., Yan, T., & Cooney, M. J. (2014). High rate anaerobic digestion of wastewater separated from grease trap waste. Renewable Energy, 62, 234–242. https://doi.org/10.1016/J.RENENE.2013.06.047
  • Lovley, D. R. (2017). Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annual Review of Microbiology, 71, 643–664. https://doi.org/10.1146/ANNUREV-MICRO-030117-020420
  • Lü, F., Luo, C., Shao, L., & He, P. (2016). Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Research, 90, 34–43. https://doi.org/10.1016/J.WATRES.2015.12.029
  • Luo, C., Lü, F., Shao, L., & He, P. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68, 710–718. https://doi.org/10.1016/J.WATRES.2014.10.052
  • Ma, H., Hu, Y., Kobayashi, T., & Xu, K. Q. (2020). The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition. Biotechnology Reports, 27, e00515–e00515. https://doi.org/10.1016/J.BTRE.2020.E00515
  • Ma, J., Chen, F., Xue, S., Pan, J., Khoshnevisan, B., Yang, Y., … Qiu, L. (2021). Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresource Technology, 325. https://doi.org/10.1016/J.BIORTECH.2021.124697
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46(15), 7939–7954. https://doi.org/10.1021/ES301029G
  • Marsh, H., & Rodríguez-Reinoso, F. (2006). Activated Carbon. Activated Carbon. Elsevier. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4
  • Masebinu, S. O., Akinlabi, E. T., Muzenda, E., & Aboyade, A. O. (2019). A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews, 103, 291–307. https://doi.org/10.1016/J.RSER.2018.12.048
  • Meng, L., Xie, L., Suenaga, T., Riya, S., Terada, A., & Hosomi, M. (2020). Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors treating agricultural waste. Bioresource Technology, 309. https://doi.org/10.1016/J.BIORTECH.2020.123366
  • Misi, S. N., & Forster, C. F. (2001). Batch co-digestion of multi-component agro-wastes. Bioresource Technology, 80(1), 19–28. https://doi.org/10.1016/S0960-8524(01)00078-5
  • Molina-Sabio, M., Gonalves, M., & Rodríguez-Reinoso, F. (2011). Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: Effect on ammonia adsorption. Microporous and Mesoporous Materials, 142(2–3), 577–584. https://doi.org/10.1016/J.MICROMESO.2010.12.045
  • Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. https://doi.org/10.1016/J.CARBON.2003.09.022
  • Nakakubo, R., Møller, H. B., Nielsen, A. M., & Matsuda, J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environmental Engineering Science, 25(10), 1487–1496. https://doi.org/10.1089/EES.2007.0282
  • Nelson, N. O., Mikkelsen, R. L., & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technology, 89(3), 229–236. https://doi.org/10.1016/S0960-8524(03)00076-2
  • Nzediegwu, C., Arshad, M., Ulah, A., Naeth, M. A., & Chang, S. X. (2021). Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresource Technology, 320, 124282. https://doi.org/10.1016/J.BIORTECH.2020.124282
  • Ok, Y. S., Tsang, D. C. W., Bolan, N., & Novak, J. M. (2018). Biochar from biomass and waste: Fundamentals and applications. Biochar from Biomass and Waste: Fundamentals and Applications, 1–462. https://doi.org/10.1016/C2016-0-01974-5
  • Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., … Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4), 2385–2485. https://doi.org/10.1007/S10311-022-01424-X
  • Pandey, P. K., Ndegwa, P. M., Soupir, M. L., Alldredge, J. R., & Pitts, M. J. (2011). Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass and Bioenergy, 35(7), 2705–2720. https://doi.org/10.1016/J.BIOMBIOE.2011.03.017
  • Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/S00253-011-3625-4
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. https://doi.org/10.1016/J.RSER.2014.10.074
  • Qin, Y., Yin, X., Xu, X., Yan, X., Bi, F., & Wu, W. (2020). Specific surface area and electron donating capacity determine biochar’s role in methane production during anaerobic digestion. Bioresource Technology, 303, 122919. https://doi.org/10.1016/J.BIORTECH.2020.122919
  • Qiu, L., Deng, Y. F., Wang, F., Davaritouchaee, M., & Yao, Y. Q. (2019). A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renewable and Sustainable Energy Reviews, 115, 109373. https://doi.org/10.1016/J.RSER.2019.109373
  • Rajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/J.BIORTECH.2013.06.030
  • Rajec, P., Rosskopfová, O., Galamboš, M., Frišták, V., Soja, G., Dafnomili, A., … Matović, L. (2016). Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. Journal of Radioanalytical and Nuclear Chemistry, 310(1), 253–261. https://doi.org/10.1007/S10967-016-4811-8/METRICS
  • Rotaru, A. E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., … Lovley, D. R. (2014). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy and Environmental Science, 7(1), 408–415. https://doi.org/10.1039/C3EE42189A
  • Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253–285. https://doi.org/10.1007/S42773-020-00047-1
  • Sasaki, K., Morita, M., Hirano, S. I., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90(4), 1555–1561. https://doi.org/10.1007/S00253-011-3215-5
  • Seredych, M., & Bandosz, T. J. (2007). Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure. Journal of Physical Chemistry C, 111(43), 15596–15604. https://doi.org/10.1021/JP0735785
  • Shareef, T. M. E., & Zhao, B. (2017). Review Paper: The Fundamentals of Biochar as a Soil Amendment Tool and Management in Agriculture Scope: An Overview for Farmers and Gardeners. Journal of Agricultural Chemistry and Environment, 06(01), 38–61. https://doi.org/10.4236/JACEN.2017.61003
  • Sharma, P., & Melkania, U. (2017). Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. International Journal of Hydrogen Energy, 42(30), 18865–18874. https://doi.org/10.1016/J.IJHYDENE.2017.06.171
  • Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., … Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85. https://doi.org/10.1016/J.BIORTECH.2013.06.099
  • Shen, Y., Linville, J. L., Ignacio-de Leon, P. A. A., Schoene, R. P., & Urgun-Demirtas, M. (2016). Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. Journal of Cleaner Production, 135, 1054–1064. https://doi.org/10.1016/J.JCLEPRO.2016.06.144
  • Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90(3), 241–247. https://doi.org/10.1016/S0960-8524(03)00147-0
  • Sobik-Szołtysek, J., Wystalska, K., Malińska, K., & Meers, E. (2021). Influence of pyrolysis temperature on the heavy metal sorption capacity of biochar from poultry manure. Materials, 14(21). https://doi.org/10.3390/MA14216566
  • Son, E. B., Poo, K. M., Chang, J. S., & Chae, K. J. (2018). Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of the Total Environment, 615, 161–168. https://doi.org/10.1016/J.SCITOTENV.2017.09.171
  • Sossa, K., Alarcón, M., Aspé, E., & Urrutia, H. (2004). Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. Anaerobe, 10(1), 13–18. https://doi.org/10.1016/J.ANAEROBE.2003.10.004
  • Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289–303. https://doi.org/10.4155/CMT.10.32
  • Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568–577. https://doi.org/10.1038/NRMICRO2166
  • Su, C., Zhao, L., Liao, L., Qin, J., Lu, Y., Deng, Q., … Huang, Z. (2019). Application of biochar in a CIC reactor to relieve ammonia nitrogen stress and promote microbial community during food waste treatment. Journal of Cleaner Production, 209, 353–362. https://doi.org/10.1016/J.JCLEPRO.2018.10.269
  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. https://doi.org/10.1016/J.BIOMBIOE.2015.11.010
  • Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009), 1413–1415. https://doi.org/10.1126/SCIENCE.1196526
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350(1–2), 57–69. https://doi.org/10.1007/S11104-011-0870-3
  • Tang, S., Wang, Z., Liu, Z., Zhang, Y., & Si, B. (2020). The role of biochar to enhance anaerobic digestion: A review. Journal of Renewable Materials, 8(9), 1033–1052. https://doi.org/10.32604/JRM.2020.011887
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. https://doi.org/10.1007/S11157-020-09523-3/TABLES/3
  • Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/J.RSER.2015.10.122
  • Wang, C., Liu, Y., Gao, X., Chen, H., Xu, X., & Zhu, L. (2018). Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresource Technology, 268, 28–35. https://doi.org/10.1016/J.BIORTECH.2018.07.116
  • Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., … Song, C. (2017). Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresource Technology, 227, 286–296. https://doi.org/10.1016/J.BIORTECH.2016.12.060
  • Wang, G., Li, Q., Gao, X., & Wang, X. C. (2018). Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresource Technology, 250, 812–820. https://doi.org/10.1016/J.BIORTECH.2017.12.004
  • Wang, G., Li, Q., Gao, X., & Wang, X. C. (2019). Sawdust-Derived Biochar Much Mitigates VFAs Accumulation and Improves Microbial Activities to Enhance Methane Production in Thermophilic Anaerobic Digestion. ACS Sustainable Chemistry and Engineering, 7(2), 2141–2150. https://doi.org/10.1021/ACSSUSCHEMENG.8B04789
  • Wang, J., Zhao, Z., & Zhang, Y. (2021). Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renewable Energy, 167, 791–799. https://doi.org/10.1016/J.RENENE.2020.11.153
  • Watanabe, Y., & Tanaka, K. (1999). Innovative sludge handling through pelletization/thickening. Water Research, 33(15), 3245–3252. https://doi.org/10.1016/S0043-1354(99)00045-7
  • Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/J.FUEL.2017.12.054
  • Xiao, L., Lichtfouse, E., Kumar, P. S., Wang, Q., & Liu, F. (2021). Biochar promotes methane production during anaerobic digestion of organic waste. Environmental Chemistry Letters, 19(5), 3557–3564. https://doi.org/10.1007/S10311-021-01251-6/METRICS
  • Xie, Y., Wang, L., Li, H., Westholm, L. J., Carvalho, L., Thorin, E., … Skreiberg, Ø. (2022). A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405. https://doi.org/10.1016/J.JAAP.2021.105405
  • Xu, S., He, C., Luo, L., Lü, F., He, P., & Cui, L. (2015). Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresource Technology, 196, 606–612. https://doi.org/10.1016/J.BIORTECH.2015.08.018
  • Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., & Ruan, W. (2014). In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource Technology, 163, 186–192. https://doi.org/10.1016/J.BIORTECH.2014.04.037
  • Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., & Saravanan, A. (2019). Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology, 292, 122030. https://doi.org/10.1016/J.BIORTECH.2019.122030
  • Yang, W., Feng, G., Miles, D., Gao, L., Jia, Y., Li, C., & Qu, Z. (2020). Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of The Total Environment, 729, 138752. https://doi.org/10.1016/J.SCITOTENV.2020.138752
  • Yang, Yan, Sun, K., Han, L., Jin, J., Sun, H., Yang, Y., & Xing, B. (2018). Effect of minerals on the stability of biochar. Chemosphere, 204, 310–317. https://doi.org/10.1016/J.CHEMOSPHERE.2018.04.057
  • Yang, Yingnan, Tada, C., Miah, M. S., Tsukahara, K., Yagishita, T., & Sawayama, S. (2004). Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Materials Science and Engineering: C, 24(3), 413–419. https://doi.org/10.1016/J.MSEC.2003.11.005
  • Yao, Y., Yu, L., Ghogare, R., Dunsmoor, A., Davaritouchaee, M., & Chen, S. (2017). Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration. Energy, 141, 179–188. https://doi.org/10.1016/J.ENERGY.2017.09.086
  • Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/J.PROCBIO.2013.04.012
  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. https://doi.org/10.1016/J.BIORTECH.2010.11.018
  • Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281. https://doi.org/10.1016/J.BIORTECH.2017.06.154
  • Zhai, S., Li, M., Xiong, Y., Wang, D., & Fu, S. (2020). Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion. Bioresource Technology, 316, 123903. https://doi.org/10.1016/J.BIORTECH.2020.123903
  • Zhang, B., Zhou, S., Zhou, L., Wen, J., & Yuan, Y. (2019). Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matters derived from wheat straw biochar. Science of The Total Environment, 696, 133895. https://doi.org/10.1016/J.SCITOTENV.2019.133895
  • Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., & He, P. (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports 2015 5:1, 5(1), 1–8. https://doi.org/10.1038/srep09406
  • Zhao, C., Lv, P., Yang, L., Xing, S., Luo, W., & Wang, Z. (2018). Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Conversion and Management, 160, 477–485. https://doi.org/10.1016/J.ENCONMAN.2018.01.059
  • Zhao, W., Yang, H., He, S., Zhao, Q., & Wei, L. (2021). A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. Bioresource Technology, 341, 125797. https://doi.org/10.1016/J.BIORTECH.2021.125797
  • Zhou, Y., Qin, S., Verma, S., Sar, T., Sarsaiya, S., Ravindran, B., … Awasthi, M. K. (2021). Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresource Technology, 337, 125451. https://doi.org/10.1016/J.BIORTECH.2021.125451

Anaerobik Parçalanma Prosesinin Zenginleştirilmesinde Katkı Maddesi Olarak Biyoçar

Yıl 2023, Cilt: 5 Sayı: 1, 1 - 27, 01.05.2023
https://doi.org/10.53472/jenas.1190980

Öz

İnsanoğlunun enerji gereksinimi dünya nüfusunun artışına paralel olarak artmaktadır. Endüstrileşmenin başlangıcından beri dünyanın enerji ihtiyacını karşılamak amacıyla başlıca petrol, kömür ve doğal gaz gibi fosil kaynaklar kullanılmıştır. Ancak, yakın gelecekte bu kaynakların dünyanın enerji gereksinimini sağlayamayacak seviyeye geleceği ve tükeneceği öngörülmektedir.
İnsanoğlunun bu artan enerji ihtiyacı karşılanırken atmosfere sera gazlarının salınmaması, sera gazların olumsuz etkilerinin engellenmesi veya azaltılması bir gerekliliktir. Bu da ancak çevreyi kirletmeyen, sürdürülebilir ve yenilenebilir alternatif enerji kaynaklarının kullanılması ile mümkün olacaktır. Biyokütle bu alternatif enerji kaynakları arasında öne çıkan seçeneklerden biridir.
Biyokütlenin enerji kaynağı olarak kullanılabilmesi için uygun madde formuna dönüştürülmesi gerekmektedir. Piroliz yöntemi, biyokütlenin katma değerli katı, sıvı ve gaz ürünlere dönüştürülmesini sağlamaktadır. Bu çalışmada piroliz teknolojisi ile üretilen katı ürün olan biyoçarın özellikleri, kullanım alanları ve anaerobik parçalanma prosesi üzerindeki etki mekanizmaları ele alınmıştır.

Kaynakça

  • Abbas, Y., Yun, S., Wang, Z., Zhang, Y., Zhang, X., & Wang, K. (2021). Recent advances in bio-based carbon materials for anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 135, 110378. https://doi.org/10.1016/J.RSER.2020.110378
  • Ahmed, M. J., & Hameed, B. H. (2020). Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. Journal of Cleaner Production, 265, 121762. https://doi.org/10.1016/J.JCLEPRO.2020.121762
  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. https://doi.org/10.1016/J.BIORTECH.2012.12.165
  • Amonette, J. E., & Joseph, S. D. (2009). Characteristics of biochar: Microchemical properties. Biochar for Environmental Management. Retrieved from https://www.researchgate.net/publication/255216430_Characteristics_of_biochar_Microchemical_properties
  • Antón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., & Eymar, E. (2018). Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160, 162–172. https://doi.org/10.1016/J.CLAY.2017.12.023
  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18. https://doi.org/10.1007/S11104-010-0464-5
  • B, S. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews : MMBR, 61(2), 262–280. https://doi.org/10.1128/MMBR.61.2.262-280.1997
  • Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. (2011). Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry, 43(2), 296–301. https://doi.org/10.1016/J.SOILBIO.2010.10.014
  • Balajii, M., & Niju, S. (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 17(4), 1447–1469. https://doi.org/10.1007/S10311-019-00885-X
  • Bouallagui, H., Touhami, Y., Ben Cheikh, R., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3–4), 989–995. https://doi.org/10.1016/J.PROCBIO.2004.03.007
  • Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., & Antal, M. J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial and Engineering Chemistry Research, 46(18), 5954–5967. https://doi.org/10.1021/IE070415U
  • Cai, J., He, P., Wang, Y., Shao, L., & Lü, F. (2016). Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Management and Research, 34(5), 409–416. https://doi.org/10.1177/0734242X16634196
  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. https://doi.org/10.1016/J.BIORTECH.2011.11.084
  • Cao, Y., & Pawłowski, A. (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16(3), 1657–1665. https://doi.org/10.1016/J.RSER.2011.12.014
  • Cetin, E., Moghtaderi, B., Gupta, R., & Wall, T. F. (2004). Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 83(16), 2139–2150. https://doi.org/10.1016/J.FUEL.2004.05.008
  • Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. https://doi.org/10.1016/J.JIEC.2016.06.002
  • Chacón, F. J., Sánchez-Monedero, M. A., Lezama, L., & Cayuela, M. L. (2020). Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chemical Engineering Journal, 395, 125100. https://doi.org/10.1016/J.CEJ.2020.125100
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634. https://doi.org/10.1071/SR07109
  • Chen, S., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., … Lovley, D. R. (2014). Promoting interspecies electron transfer with biochar. Scientific Reports, 4. https://doi.org/10.1038/SREP05019
  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/J.BIORTECH.2007.01.057
  • Cheng, Q., De Los Reyes, F. L., & Call, D. F. (2018). Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environmental Science: Water Research & Technology, 4(11), 1794–1806. https://doi.org/10.1039/C8EW00447A
  • Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 39(4), 1218–1223. https://doi.org/10.2134/JEQ2010.0204
  • Dang, Y., Holmes, D. E., Zhao, Z., Woodard, T. L., Zhang, Y., Sun, D., … Lovley, D. R. (2016). Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresource Technology, 220, 516–522. https://doi.org/10.1016/J.BIORTECH.2016.08.114
  • De Vrieze, J., Devooght, A., Walraedt, D., & Boon, N. (2016). Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Applied Microbiology and Biotechnology, 100(11), 5177–5187. https://doi.org/10.1007/S00253-016-7503-Y
  • Deng, C., Lin, R., Kang, X., Wu, B., O’Shea, R., & Murphy, J. D. (2020). Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis. Renewable and Sustainable Energy Reviews, 128, 109895. https://doi.org/10.1016/J.RSER.2020.109895
  • Deng, Y., Dai, B., Xu, J., Liu, X., & Xu, J. (2018). Anaerobic co-digestion of rice straw and soybean straw to increase biogas production by pretreatment with trichoderma reesei RUT C30. Environmental Progress and Sustainable Energy, 37(3), 1050–1057. https://doi.org/10.1002/EP.12782
  • Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Ibeto, C. N., Li, H., Usmani, S. Q., & Semple, K. T. (2017). The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236–249. https://doi.org/10.1016/J.WASMAN.2016.11.028
  • Fidel, R. B., Laird, D. A., Thompson, M. L., & Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167, 367–373. https://doi.org/10.1016/J.CHEMOSPHERE.2016.09.151
  • Gabhi, R. S., Kirk, D. W., & Jia, C. Q. (2017). Preliminary investigation of electrical conductivity of monolithic biochar. Carbon, 116, 435–442. https://doi.org/10.1016/J.CARBON.2017.01.069
  • Gao, M., Zhang, L., & Liu, Y. (2020). High-loading food waste and blackwater anaerobic co-digestion: Maximizing bioenergy recovery. Chemical Engineering Journal, 394. https://doi.org/10.1016/J.CEJ.2020.124911
  • Giwa, A. S., Xu, H., Chang, F., Wu, J., Li, Y., Ali, N., … Wang, K. (2019). Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. Journal of Environmental Chemical Engineering, 7(4), 103067. https://doi.org/10.1016/J.JECE.2019.103067
  • Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35(2), 667–678. https://doi.org/10.1007/S13593-014-0251-4
  • Gopinath, K. P., Vo, D. V. N., Gnana Prakash, D., Adithya Joseph, A., Viswanathan, S., & Arun, J. (2021). Environmental applications of carbon-based materials: a review. Environmental Chemistry Letters, 19(1), 557–582. https://doi.org/10.1007/S10311-020-01084-9
  • Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure : inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7
  • He, J., Xiao, Y., Tang, J., Chen, H., & Sun, H. (2019). Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Science of The Total Environment, 690, 768–777. https://doi.org/10.1016/J.SCITOTENV.2019.07.043
  • Hejnfelt, A., & Angelidaki, I. (2009). Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy, 33(8), 1046–1054. https://doi.org/10.1016/J.BIOMBIOE.2009.03.004
  • Hopkins, D., & Hawboldt, K. (2020). Biochar for the removal of metals from solution: A review of lignocellulosic and novel marine feedstocks. Journal of Environmental Chemical Engineering, 8(4), 103975. https://doi.org/10.1016/J.JECE.2020.103975
  • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/EN5124952
  • JunTing, P., JunYi, M., Ling, Q., XiaoHui, G., & Gao, T. (2016). The performance of biochar-mediated anaerobic digestion of chicken manure. China Environmental Science, 36(9), 2716–2721. Retrieved from https://www.researchgate.net/publication/309115088_The_performance_of_biochar-mediated_anaerobic_digestion_of_chicken_manure
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/J.RSER.2015.01.050
  • Khalid, Z. Bin, Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. Bin, & Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4), 105489. https://doi.org/10.1016/J.JECE.2021.105489
  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43. https://doi.org/10.1016/J.BIOMBIOE.2012.01.033
  • Kosheleva, R. I., Mitropoulos, A. C., & Kyzas, G. Z. (2019). Synthesis of activated carbon from food waste. Environmental Chemistry Letters, 17(1), 429–438. https://doi.org/10.1007/S10311-018-0817-5
  • Koukouzas, N., Hämäläinen, J., Papanikolaou, D., Tourunen, A., & Jäntti, T. (2007). Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86(14), 2186–2193. https://doi.org/10.1016/J.FUEL.2007.03.036
  • Kumar, A. N., Dissanayake, P. D., Masek, O., Priya, A., Ki Lin, C. S., Ok, Y. S., & Kim, S. H. (2021). Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop. Renewable and Sustainable Energy Reviews, 149, 111371. https://doi.org/10.1016/J.RSER.2021.111371
  • Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547–562. https://doi.org/10.1002/BBB.169
  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44(20), 7970–7974. https://doi.org/10.1021/ES101337X
  • Lehmann, Johanne, & Joseph, S. (2015). Biochar for environmental management: an introduction. Biochar for Environmental Management, 1–13. https://doi.org/10.4324/9780203762264-1
  • Lehmann, Johannes, Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403–427. https://doi.org/10.1007/S11027-005-9006-5
  • Lenmann, J. (2007). Bio-Energy in the Black. Frontiers in Ecology and the Environment, 381–387. Retrieved from https://www.researchgate.net/publication/221899775_Bio-Energy_in_the_Black
  • Li, R., Liang, W., Wang, J. J., Gaston, L. A., Huang, D., Huang, H., … Zhang, Z. (2018). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212, 77–87. https://doi.org/10.1016/J.JENVMAN.2017.12.034
  • Lim, E. Y., Tian, H., Chen, Y., Ni, K., Zhang, J., & Tong, Y. W. (2020). Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresource Technology, 314, 123751. https://doi.org/10.1016/J.BIORTECH.2020.123751
  • Ling, L. L., Liu, W. J., Zhang, S., & Jiang, H. (2017). Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. Environmental Science and Technology, 51(17), 10081–10089. https://doi.org/10.1021/ACS.EST.7B02382/SUPPL_FILE/ES7B02382_SI_001.PDF
  • Liu, F., Rotaru, A. E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., & Lovley, D. R. (2012). Promoting direct interspecies electron transfer with activated carbon. Energy and Environmental Science, 5(10), 8982–8989. https://doi.org/10.1039/C2EE22459C
  • Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/ACS.CHEMREV.5B00195
  • Lopez, R. J., Higgins, S. R., Pagaling, E., Yan, T., & Cooney, M. J. (2014). High rate anaerobic digestion of wastewater separated from grease trap waste. Renewable Energy, 62, 234–242. https://doi.org/10.1016/J.RENENE.2013.06.047
  • Lovley, D. R. (2017). Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annual Review of Microbiology, 71, 643–664. https://doi.org/10.1146/ANNUREV-MICRO-030117-020420
  • Lü, F., Luo, C., Shao, L., & He, P. (2016). Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Research, 90, 34–43. https://doi.org/10.1016/J.WATRES.2015.12.029
  • Luo, C., Lü, F., Shao, L., & He, P. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68, 710–718. https://doi.org/10.1016/J.WATRES.2014.10.052
  • Ma, H., Hu, Y., Kobayashi, T., & Xu, K. Q. (2020). The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition. Biotechnology Reports, 27, e00515–e00515. https://doi.org/10.1016/J.BTRE.2020.E00515
  • Ma, J., Chen, F., Xue, S., Pan, J., Khoshnevisan, B., Yang, Y., … Qiu, L. (2021). Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresource Technology, 325. https://doi.org/10.1016/J.BIORTECH.2021.124697
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46(15), 7939–7954. https://doi.org/10.1021/ES301029G
  • Marsh, H., & Rodríguez-Reinoso, F. (2006). Activated Carbon. Activated Carbon. Elsevier. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4
  • Masebinu, S. O., Akinlabi, E. T., Muzenda, E., & Aboyade, A. O. (2019). A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews, 103, 291–307. https://doi.org/10.1016/J.RSER.2018.12.048
  • Meng, L., Xie, L., Suenaga, T., Riya, S., Terada, A., & Hosomi, M. (2020). Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors treating agricultural waste. Bioresource Technology, 309. https://doi.org/10.1016/J.BIORTECH.2020.123366
  • Misi, S. N., & Forster, C. F. (2001). Batch co-digestion of multi-component agro-wastes. Bioresource Technology, 80(1), 19–28. https://doi.org/10.1016/S0960-8524(01)00078-5
  • Molina-Sabio, M., Gonalves, M., & Rodríguez-Reinoso, F. (2011). Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: Effect on ammonia adsorption. Microporous and Mesoporous Materials, 142(2–3), 577–584. https://doi.org/10.1016/J.MICROMESO.2010.12.045
  • Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. https://doi.org/10.1016/J.CARBON.2003.09.022
  • Nakakubo, R., Møller, H. B., Nielsen, A. M., & Matsuda, J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environmental Engineering Science, 25(10), 1487–1496. https://doi.org/10.1089/EES.2007.0282
  • Nelson, N. O., Mikkelsen, R. L., & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technology, 89(3), 229–236. https://doi.org/10.1016/S0960-8524(03)00076-2
  • Nzediegwu, C., Arshad, M., Ulah, A., Naeth, M. A., & Chang, S. X. (2021). Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresource Technology, 320, 124282. https://doi.org/10.1016/J.BIORTECH.2020.124282
  • Ok, Y. S., Tsang, D. C. W., Bolan, N., & Novak, J. M. (2018). Biochar from biomass and waste: Fundamentals and applications. Biochar from Biomass and Waste: Fundamentals and Applications, 1–462. https://doi.org/10.1016/C2016-0-01974-5
  • Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., … Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4), 2385–2485. https://doi.org/10.1007/S10311-022-01424-X
  • Pandey, P. K., Ndegwa, P. M., Soupir, M. L., Alldredge, J. R., & Pitts, M. J. (2011). Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass and Bioenergy, 35(7), 2705–2720. https://doi.org/10.1016/J.BIOMBIOE.2011.03.017
  • Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/S00253-011-3625-4
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. https://doi.org/10.1016/J.RSER.2014.10.074
  • Qin, Y., Yin, X., Xu, X., Yan, X., Bi, F., & Wu, W. (2020). Specific surface area and electron donating capacity determine biochar’s role in methane production during anaerobic digestion. Bioresource Technology, 303, 122919. https://doi.org/10.1016/J.BIORTECH.2020.122919
  • Qiu, L., Deng, Y. F., Wang, F., Davaritouchaee, M., & Yao, Y. Q. (2019). A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renewable and Sustainable Energy Reviews, 115, 109373. https://doi.org/10.1016/J.RSER.2019.109373
  • Rajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/J.BIORTECH.2013.06.030
  • Rajec, P., Rosskopfová, O., Galamboš, M., Frišták, V., Soja, G., Dafnomili, A., … Matović, L. (2016). Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. Journal of Radioanalytical and Nuclear Chemistry, 310(1), 253–261. https://doi.org/10.1007/S10967-016-4811-8/METRICS
  • Rotaru, A. E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., … Lovley, D. R. (2014). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy and Environmental Science, 7(1), 408–415. https://doi.org/10.1039/C3EE42189A
  • Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253–285. https://doi.org/10.1007/S42773-020-00047-1
  • Sasaki, K., Morita, M., Hirano, S. I., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90(4), 1555–1561. https://doi.org/10.1007/S00253-011-3215-5
  • Seredych, M., & Bandosz, T. J. (2007). Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure. Journal of Physical Chemistry C, 111(43), 15596–15604. https://doi.org/10.1021/JP0735785
  • Shareef, T. M. E., & Zhao, B. (2017). Review Paper: The Fundamentals of Biochar as a Soil Amendment Tool and Management in Agriculture Scope: An Overview for Farmers and Gardeners. Journal of Agricultural Chemistry and Environment, 06(01), 38–61. https://doi.org/10.4236/JACEN.2017.61003
  • Sharma, P., & Melkania, U. (2017). Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. International Journal of Hydrogen Energy, 42(30), 18865–18874. https://doi.org/10.1016/J.IJHYDENE.2017.06.171
  • Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., … Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85. https://doi.org/10.1016/J.BIORTECH.2013.06.099
  • Shen, Y., Linville, J. L., Ignacio-de Leon, P. A. A., Schoene, R. P., & Urgun-Demirtas, M. (2016). Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. Journal of Cleaner Production, 135, 1054–1064. https://doi.org/10.1016/J.JCLEPRO.2016.06.144
  • Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90(3), 241–247. https://doi.org/10.1016/S0960-8524(03)00147-0
  • Sobik-Szołtysek, J., Wystalska, K., Malińska, K., & Meers, E. (2021). Influence of pyrolysis temperature on the heavy metal sorption capacity of biochar from poultry manure. Materials, 14(21). https://doi.org/10.3390/MA14216566
  • Son, E. B., Poo, K. M., Chang, J. S., & Chae, K. J. (2018). Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of the Total Environment, 615, 161–168. https://doi.org/10.1016/J.SCITOTENV.2017.09.171
  • Sossa, K., Alarcón, M., Aspé, E., & Urrutia, H. (2004). Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. Anaerobe, 10(1), 13–18. https://doi.org/10.1016/J.ANAEROBE.2003.10.004
  • Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289–303. https://doi.org/10.4155/CMT.10.32
  • Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568–577. https://doi.org/10.1038/NRMICRO2166
  • Su, C., Zhao, L., Liao, L., Qin, J., Lu, Y., Deng, Q., … Huang, Z. (2019). Application of biochar in a CIC reactor to relieve ammonia nitrogen stress and promote microbial community during food waste treatment. Journal of Cleaner Production, 209, 353–362. https://doi.org/10.1016/J.JCLEPRO.2018.10.269
  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. https://doi.org/10.1016/J.BIOMBIOE.2015.11.010
  • Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., & Lovley, D. R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330(6009), 1413–1415. https://doi.org/10.1126/SCIENCE.1196526
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350(1–2), 57–69. https://doi.org/10.1007/S11104-011-0870-3
  • Tang, S., Wang, Z., Liu, Z., Zhang, Y., & Si, B. (2020). The role of biochar to enhance anaerobic digestion: A review. Journal of Renewable Materials, 8(9), 1033–1052. https://doi.org/10.32604/JRM.2020.011887
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. https://doi.org/10.1007/S11157-020-09523-3/TABLES/3
  • Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/J.RSER.2015.10.122
  • Wang, C., Liu, Y., Gao, X., Chen, H., Xu, X., & Zhu, L. (2018). Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresource Technology, 268, 28–35. https://doi.org/10.1016/J.BIORTECH.2018.07.116
  • Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., … Song, C. (2017). Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresource Technology, 227, 286–296. https://doi.org/10.1016/J.BIORTECH.2016.12.060
  • Wang, G., Li, Q., Gao, X., & Wang, X. C. (2018). Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresource Technology, 250, 812–820. https://doi.org/10.1016/J.BIORTECH.2017.12.004
  • Wang, G., Li, Q., Gao, X., & Wang, X. C. (2019). Sawdust-Derived Biochar Much Mitigates VFAs Accumulation and Improves Microbial Activities to Enhance Methane Production in Thermophilic Anaerobic Digestion. ACS Sustainable Chemistry and Engineering, 7(2), 2141–2150. https://doi.org/10.1021/ACSSUSCHEMENG.8B04789
  • Wang, J., Zhao, Z., & Zhang, Y. (2021). Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renewable Energy, 167, 791–799. https://doi.org/10.1016/J.RENENE.2020.11.153
  • Watanabe, Y., & Tanaka, K. (1999). Innovative sludge handling through pelletization/thickening. Water Research, 33(15), 3245–3252. https://doi.org/10.1016/S0043-1354(99)00045-7
  • Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/J.FUEL.2017.12.054
  • Xiao, L., Lichtfouse, E., Kumar, P. S., Wang, Q., & Liu, F. (2021). Biochar promotes methane production during anaerobic digestion of organic waste. Environmental Chemistry Letters, 19(5), 3557–3564. https://doi.org/10.1007/S10311-021-01251-6/METRICS
  • Xie, Y., Wang, L., Li, H., Westholm, L. J., Carvalho, L., Thorin, E., … Skreiberg, Ø. (2022). A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405. https://doi.org/10.1016/J.JAAP.2021.105405
  • Xu, S., He, C., Luo, L., Lü, F., He, P., & Cui, L. (2015). Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresource Technology, 196, 606–612. https://doi.org/10.1016/J.BIORTECH.2015.08.018
  • Xu, Z., Zhao, M., Miao, H., Huang, Z., Gao, S., & Ruan, W. (2014). In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource Technology, 163, 186–192. https://doi.org/10.1016/J.BIORTECH.2014.04.037
  • Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., & Saravanan, A. (2019). Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology, 292, 122030. https://doi.org/10.1016/J.BIORTECH.2019.122030
  • Yang, W., Feng, G., Miles, D., Gao, L., Jia, Y., Li, C., & Qu, Z. (2020). Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of The Total Environment, 729, 138752. https://doi.org/10.1016/J.SCITOTENV.2020.138752
  • Yang, Yan, Sun, K., Han, L., Jin, J., Sun, H., Yang, Y., & Xing, B. (2018). Effect of minerals on the stability of biochar. Chemosphere, 204, 310–317. https://doi.org/10.1016/J.CHEMOSPHERE.2018.04.057
  • Yang, Yingnan, Tada, C., Miah, M. S., Tsukahara, K., Yagishita, T., & Sawayama, S. (2004). Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Materials Science and Engineering: C, 24(3), 413–419. https://doi.org/10.1016/J.MSEC.2003.11.005
  • Yao, Y., Yu, L., Ghogare, R., Dunsmoor, A., Davaritouchaee, M., & Chen, S. (2017). Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration. Energy, 141, 179–188. https://doi.org/10.1016/J.ENERGY.2017.09.086
  • Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/J.PROCBIO.2013.04.012
  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. https://doi.org/10.1016/J.BIORTECH.2010.11.018
  • Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281. https://doi.org/10.1016/J.BIORTECH.2017.06.154
  • Zhai, S., Li, M., Xiong, Y., Wang, D., & Fu, S. (2020). Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion. Bioresource Technology, 316, 123903. https://doi.org/10.1016/J.BIORTECH.2020.123903
  • Zhang, B., Zhou, S., Zhou, L., Wen, J., & Yuan, Y. (2019). Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matters derived from wheat straw biochar. Science of The Total Environment, 696, 133895. https://doi.org/10.1016/J.SCITOTENV.2019.133895
  • Zhang, J., Lü, F., Zhang, H., Shao, L., Chen, D., & He, P. (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports 2015 5:1, 5(1), 1–8. https://doi.org/10.1038/srep09406
  • Zhao, C., Lv, P., Yang, L., Xing, S., Luo, W., & Wang, Z. (2018). Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Conversion and Management, 160, 477–485. https://doi.org/10.1016/J.ENCONMAN.2018.01.059
  • Zhao, W., Yang, H., He, S., Zhao, Q., & Wei, L. (2021). A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. Bioresource Technology, 341, 125797. https://doi.org/10.1016/J.BIORTECH.2021.125797
  • Zhou, Y., Qin, S., Verma, S., Sar, T., Sarsaiya, S., Ravindran, B., … Awasthi, M. K. (2021). Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresource Technology, 337, 125451. https://doi.org/10.1016/J.BIORTECH.2021.125451
Toplam 126 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Tüm Makaleler
Yazarlar

Ceyda Güneç 0000-0003-4408-4317

Cennet Teker 0000-0003-0211-7969

Zeynep Kobak 0000-0003-1371-6350

Fatih Yılmaz 0000-0001-7660-2671

Nuriye Perendeci 0000-0002-6751-5151

Yayımlanma Tarihi 1 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 1

Kaynak Göster

APA Güneç, C., Teker, C., Kobak, Z., Yılmaz, F., vd. (2023). Anaerobik Parçalanma Prosesinin Zenginleştirilmesinde Katkı Maddesi Olarak Biyoçar. JENAS Journal of Environmental and Natural Studies, 5(1), 1-27. https://doi.org/10.53472/jenas.1190980

JENAS | Journal of Environmental and Natural Studies