Derleme
BibTex RIS Kaynak Göster

Korozyon Önleyici Ajan Olarak Kolofan ve Türevleri

Yıl 2023, Cilt: 5 Sayı: 3, 231 - 236, 30.12.2023
https://doi.org/10.53472/jenas.1382148

Öz

Kolofon, başta Çam türleri olmak üzere çeşitli kaynaklardan elde edilmektedir. Kolofonın baskın bileşenleri reçine asitleridir ve abietik asit birincil reçine asidini oluşturur. Korozif ortamlarda metalik yüzey korozyonu ve alaşım çözünmesini önleyici ajan olarak kolofon ve türevleri irdelenmektedir. Korozyon inhibitörü olarak kolofon türevlerinin yeni bir yaklaşım ve temel kimyasal reaksiyonları olarak verilmiştir. Toksisite araştırmaları, kolofoninin ve türevlerinin neredeyse toksik olmayan bileşenler içerdiğini doğrulamaktadır. Böylece, kolofoninin endüstriyel uygulamalarda artan kullanımı güçlenmiştir.
Naval stores olarak da adlandırılan kolofoninin, gemilerin sızdırmazlık özelliklerini iyileştirme yeteneği iyi bilinen bir özelliktir. Petrol endüstrisinde kolofon türevleri, amfifilik doğalarından dolayı korozyon inhibitörlerine olan ilgiyi artırmaktadır. Kolofon türevleri, doğada çözünürlüğü arttırılmış, yenilenebilir bir hammaddedir. Ayrıca petrol bazlı malzemelerle karşılaştırıldığında uygun fiyatı ve düşük toksisitesi ile öne çıkmaktadır. Bu nedenle kolofon ve türevleri, kimyasal bazlı toksik korozyon inhibitörlerine kıyasla, spesifik kimyasal yapılara sahip ileri polimer uygulamalarının hammaddesi olarak dikkat çeken yeni bir yaklaşıma sahiptir. Kolofon ve türevinin deniz taşımacılığı gibi alanlarda su kirliliğine neden olmadığı da kritik bir noktadır.

Kaynakça

  • Abdel-Raouf, M. E.-S., & Abdul-Raheim, A.-R. M. (2018). Rosin: Chemistry, Derivatives, and Applications: a Review. BAOJ Chemistry, 4(1), 1–16.
  • Assessment, U. E. N. C. for E. (2009). Polymers and Surfactants on the Basis of Renewable Resources.
  • Atta, A. M., Nassar, I. F., & Bedawy, H. M. (2007). Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel. Reactive and Functional Polymers, 67(7), 617–626. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2007.04.001
  • Chirkunov, A. A., Kuznetsov, Y. I., & Gusakova, M. A. (2007). Protection of Low-Carbon Steel in Aqueous Solutions by Lignosulfonate Inhibitors. Protection of Metals, 43(4), 367–372.
  • Cunningham, A. (2012). Pine Resin Tapping Techniques Used Around the World. Pine resin: biology, chemistry and applications, 1–8.
  • da Silva Rodrigues-Corrêa, K. C., de Lima, J. C., & Fett-Neto, A. G. (2013). Oleoresins from pine: Production and industrial uses. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, 4037–4060. https://doi.org/10.1007/978-3-642-22144-6_175/COVER
  • European Commission. Directorate-General for Economic and Financial Affairs. (2011). European economic forecast, Spring 2011, 234.
  • [8]. Fomin, V. A., & Guzeev, V. V. (2001). Biodegradable Polymers, State of the Art and Prospectives of Application. Plast. Massy, 2, 42–48.
  • Izionworu, V. (2020). Green and eco benign corrosion inhibition agents Alternatives and options to chemical based toxic corrosion inhibitors. Chemistry International. https://doi.org/10.5281/ZENODO.3706592
  • Jin, Y., Li, S., Li, S., & Zhang, L. (2011). Synthesis and Characterization of Rosinyl Amine Salt Surfactant. Advanced Materials Research, 183–185, 1888–1891. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.183-185.1888
  • Kim, C., Karayan, A. I., Milla, J., Hassan, M., & Castaneda, H. (2020). Smart Coating Embedded with pH-Responsive Nanocapsules Containing a Corrosion Inhibiting Agent. ACS Applied Materials and Interfaces, 12(5), 6451–6459. https://doi.org/10.1021/ACSAMI.9B20238/ASSET/IMAGES/MEDIUM/AM9B20238_0011.GIF
  • Lambrakos, S. G., Trzaskoma-Paulette, P. P., Cooper, K. P., & Tran, N. E. (2004). Properties and effects of water-soluble inhibitors on the corrosion rates of structural metals. Journal of Materials Engineering and Performance 2004 13:6, 13(6), 766–774. https://doi.org/10.1361/10599490421556
  • Lim, H. N. (2009). Palm-based nonionic surfactants as emulsifiers for high internal phase emulsions.
  • Loshadkin, D. V. (2002). Biodegradable Plastics: Types of Materials, Their Basic Properties, and Prospective Industrial Applications. Plast. Massyv, 7, 41–44.
  • Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297–338.
  • Mandaogade, P. M., Satturwar, P. M., Fulzele, S. V., Gogte, B. B., & Dorle, A. K. (2002). Rosin derivatives: novel film forming materials for controlled drug delivery. Reactive and Functional Polymers, 50(3), 233–242. https://doi.org/10.1016/S1381-5148(01)00117-1
  • Mustatǎ, F., & Bicu, I. (2009). Polyhydroxyimides from resinic acids. Polimery/Polymers, 45(4), 258–263. https://doi.org/10.14314/POLIMERY.2000.258
  • Pathak, Y. V., & Dorle, A. K. (1986). Evaluation of Pentaerythritol (Rosin) Estergum as Coating Materials. Drug Development and Industrial Pharmacy, 12(11–13), 2217–2229. https://doi.org/10.3109/03639048609042631
  • Pathak, Y. V., & Dorle, A. K. (1987). Study of rosin and rosin derivatives as coating materials for controlled release of drug. Journal of Controlled Release, 5(1), 63–68. https://doi.org/10.1016/0168-3659(87)90038-1
  • Prabu, S. L., Shirwaikar, A., Shirwaikar, A., & Kumar, A. (2009). Formulation and evaluation of sustained release microspheres of rosin containing aceclofenac. Ars Pharmaceutica, 50(2), 1–12. Tarihinde adresinden erişildi https://researcher.manipal.edu/en/publications/formulation-and-evaluation-of-sustained-release-microspheres-of-r
  • Quraishi, M. A., Jamal, D., & Saeed, M. T. (2000). Fatty acid derivatives as corrosion inhibitors for mild steel and oil-well tubular steel in 15% boiling hydrochloric acid. Journal of the American Oil Chemists’ Society, 77(3), 265–268. https://doi.org/10.1007/S11746-000-0043-3
  • Sahu, N. H., Mandaogade, P. M., Deshmukh, A. M., Meghre, V. S., & Dorle, A. K. (1999). Biodegradation Studies of Rosin-Glycerol Ester Derivative. http://dx.doi.org/10.1177/088391159901400405, 14(4), 344–360. https://doi.org/10.1177/088391159901400405
  • Satturwar, P. M., Mandaogade, P. M., Fulzele, S. V., Darwhekar, G. N., Joshi, S. B., & Dorle, A. K. (2002). Synthesis and evaluation of rosin-based polymers as film coating materials. Drug development and industrial pharmacy, 28(4), 381–387. https://doi.org/10.1081/DDC-120002999
  • Sheorey, D. S., & Dorle, A. K. (1990). Preparation and in vitro evaluation of rosin microcapsules: solvent evaporation technique. Journal of microencapsulation, 7(2), 261–264. https://doi.org/10.3109/02652049009021839
  • Sheorey, D. S., & Dorle, A. K. (1991). Release kinetics of drugs from rosin-glycerol ester microcapsules prepared by solvent evaporation technique. Journal of microencapsulation, 8(2), 243–246. https://doi.org/10.3109/02652049109071492
  • Sinha Roy, S., Kundu, A. K., & Maiti, S. (1990). Polymers from renewable resources—13. Polymers from rosin acrylic acid adduct. European Polymer Journal, 26(4), 471–474. https://doi.org/10.1016/0014-3057(90)90055-9
  • Weaver, J. C. (1983). Kirk-Encyclopedia of Chemical Technology. (H. F. Mark, D. F. Othmer, C. G. Overberger, & G. T. Seaborg, Ed.) (John Wiley). New York.
  • Yıldızbaş, A., İstek, A., Burcu SIRADAĞ, C., Üniversitesi, B., Fakültesi, O., Endüstri Mühendisliği Bölümü, O., Eğitim Enstitüsü, L., & Endüstri Mühendisliği Ana Bilim Dalı, O. (2023). Reçine Üretimine Genel Bir Bakış ve Covid-19’ un Üretim Üzerine Etkisi. Bartın Orman Fakültesi Dergisi, 25(2), 320–339. https://doi.org/10.24011/BAROFD.1218040
  • Zachary, L. G., Bajak, H. W., & Eveline, F. J. (1965). Tall Oil and Its Uses. New York: McGraw Hill.
  • Zinkel, D. F. (1989). Naval Stores. Içinde J. W. Rowe (Ed.), Natural Products of Woody Plants (ss. 953–978). Berlin, Heidelberg: Springer.

COLOPHONY and It’s Derivatives as Corrosion Inhibitor Agent

Yıl 2023, Cilt: 5 Sayı: 3, 231 - 236, 30.12.2023
https://doi.org/10.53472/jenas.1382148

Öz

Colophony obtained from oleoresin, toll oil and wood stump sources from the Pine species. The dominant components of colophony are resin acids and abietic acid forms the primary resin acid. Colophony and derivatives as inhibitor agent of metallic surface corrosion and alloy dissolution in corrosive environments reviewed. The novel approach and basic chemical reactions of the colophony derivatives as a corrosion inhibitor given in detailed. Toxicity research approved that colophony and derivatives practically non-toxic component. This evidence has strengthened the reason why colophony is the escalated attention of industrial applications.
Colophony is considered green oil because it is renewable, inexpensive, and environmentally friendly material. The ability of colophony, also named naval store, to improve the sealing properties of ships is well known feature. In the oil industry, colophony derivatives have rising interest of corrosion inhibitors thanks to their amphiphilic nature. Additionally, it could be utilized as petroleum dispersants. Colophony derivatives are renewable raw material which has enhanced solubility and ambient in nature. Besides, comparing to petroleum-based materials it has affordable price and low toxicity. Therefore, colophony and derivatives have advantageous as a unique raw material of advanced polymers applications compared to chemical based toxic corrosion inhibitors. A critical note that colophony and derivative does not causing water pollution in field such as maritime transportation.

Kaynakça

  • Abdel-Raouf, M. E.-S., & Abdul-Raheim, A.-R. M. (2018). Rosin: Chemistry, Derivatives, and Applications: a Review. BAOJ Chemistry, 4(1), 1–16.
  • Assessment, U. E. N. C. for E. (2009). Polymers and Surfactants on the Basis of Renewable Resources.
  • Atta, A. M., Nassar, I. F., & Bedawy, H. M. (2007). Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel. Reactive and Functional Polymers, 67(7), 617–626. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2007.04.001
  • Chirkunov, A. A., Kuznetsov, Y. I., & Gusakova, M. A. (2007). Protection of Low-Carbon Steel in Aqueous Solutions by Lignosulfonate Inhibitors. Protection of Metals, 43(4), 367–372.
  • Cunningham, A. (2012). Pine Resin Tapping Techniques Used Around the World. Pine resin: biology, chemistry and applications, 1–8.
  • da Silva Rodrigues-Corrêa, K. C., de Lima, J. C., & Fett-Neto, A. G. (2013). Oleoresins from pine: Production and industrial uses. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, 4037–4060. https://doi.org/10.1007/978-3-642-22144-6_175/COVER
  • European Commission. Directorate-General for Economic and Financial Affairs. (2011). European economic forecast, Spring 2011, 234.
  • [8]. Fomin, V. A., & Guzeev, V. V. (2001). Biodegradable Polymers, State of the Art and Prospectives of Application. Plast. Massy, 2, 42–48.
  • Izionworu, V. (2020). Green and eco benign corrosion inhibition agents Alternatives and options to chemical based toxic corrosion inhibitors. Chemistry International. https://doi.org/10.5281/ZENODO.3706592
  • Jin, Y., Li, S., Li, S., & Zhang, L. (2011). Synthesis and Characterization of Rosinyl Amine Salt Surfactant. Advanced Materials Research, 183–185, 1888–1891. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.183-185.1888
  • Kim, C., Karayan, A. I., Milla, J., Hassan, M., & Castaneda, H. (2020). Smart Coating Embedded with pH-Responsive Nanocapsules Containing a Corrosion Inhibiting Agent. ACS Applied Materials and Interfaces, 12(5), 6451–6459. https://doi.org/10.1021/ACSAMI.9B20238/ASSET/IMAGES/MEDIUM/AM9B20238_0011.GIF
  • Lambrakos, S. G., Trzaskoma-Paulette, P. P., Cooper, K. P., & Tran, N. E. (2004). Properties and effects of water-soluble inhibitors on the corrosion rates of structural metals. Journal of Materials Engineering and Performance 2004 13:6, 13(6), 766–774. https://doi.org/10.1361/10599490421556
  • Lim, H. N. (2009). Palm-based nonionic surfactants as emulsifiers for high internal phase emulsions.
  • Loshadkin, D. V. (2002). Biodegradable Plastics: Types of Materials, Their Basic Properties, and Prospective Industrial Applications. Plast. Massyv, 7, 41–44.
  • Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297–338.
  • Mandaogade, P. M., Satturwar, P. M., Fulzele, S. V., Gogte, B. B., & Dorle, A. K. (2002). Rosin derivatives: novel film forming materials for controlled drug delivery. Reactive and Functional Polymers, 50(3), 233–242. https://doi.org/10.1016/S1381-5148(01)00117-1
  • Mustatǎ, F., & Bicu, I. (2009). Polyhydroxyimides from resinic acids. Polimery/Polymers, 45(4), 258–263. https://doi.org/10.14314/POLIMERY.2000.258
  • Pathak, Y. V., & Dorle, A. K. (1986). Evaluation of Pentaerythritol (Rosin) Estergum as Coating Materials. Drug Development and Industrial Pharmacy, 12(11–13), 2217–2229. https://doi.org/10.3109/03639048609042631
  • Pathak, Y. V., & Dorle, A. K. (1987). Study of rosin and rosin derivatives as coating materials for controlled release of drug. Journal of Controlled Release, 5(1), 63–68. https://doi.org/10.1016/0168-3659(87)90038-1
  • Prabu, S. L., Shirwaikar, A., Shirwaikar, A., & Kumar, A. (2009). Formulation and evaluation of sustained release microspheres of rosin containing aceclofenac. Ars Pharmaceutica, 50(2), 1–12. Tarihinde adresinden erişildi https://researcher.manipal.edu/en/publications/formulation-and-evaluation-of-sustained-release-microspheres-of-r
  • Quraishi, M. A., Jamal, D., & Saeed, M. T. (2000). Fatty acid derivatives as corrosion inhibitors for mild steel and oil-well tubular steel in 15% boiling hydrochloric acid. Journal of the American Oil Chemists’ Society, 77(3), 265–268. https://doi.org/10.1007/S11746-000-0043-3
  • Sahu, N. H., Mandaogade, P. M., Deshmukh, A. M., Meghre, V. S., & Dorle, A. K. (1999). Biodegradation Studies of Rosin-Glycerol Ester Derivative. http://dx.doi.org/10.1177/088391159901400405, 14(4), 344–360. https://doi.org/10.1177/088391159901400405
  • Satturwar, P. M., Mandaogade, P. M., Fulzele, S. V., Darwhekar, G. N., Joshi, S. B., & Dorle, A. K. (2002). Synthesis and evaluation of rosin-based polymers as film coating materials. Drug development and industrial pharmacy, 28(4), 381–387. https://doi.org/10.1081/DDC-120002999
  • Sheorey, D. S., & Dorle, A. K. (1990). Preparation and in vitro evaluation of rosin microcapsules: solvent evaporation technique. Journal of microencapsulation, 7(2), 261–264. https://doi.org/10.3109/02652049009021839
  • Sheorey, D. S., & Dorle, A. K. (1991). Release kinetics of drugs from rosin-glycerol ester microcapsules prepared by solvent evaporation technique. Journal of microencapsulation, 8(2), 243–246. https://doi.org/10.3109/02652049109071492
  • Sinha Roy, S., Kundu, A. K., & Maiti, S. (1990). Polymers from renewable resources—13. Polymers from rosin acrylic acid adduct. European Polymer Journal, 26(4), 471–474. https://doi.org/10.1016/0014-3057(90)90055-9
  • Weaver, J. C. (1983). Kirk-Encyclopedia of Chemical Technology. (H. F. Mark, D. F. Othmer, C. G. Overberger, & G. T. Seaborg, Ed.) (John Wiley). New York.
  • Yıldızbaş, A., İstek, A., Burcu SIRADAĞ, C., Üniversitesi, B., Fakültesi, O., Endüstri Mühendisliği Bölümü, O., Eğitim Enstitüsü, L., & Endüstri Mühendisliği Ana Bilim Dalı, O. (2023). Reçine Üretimine Genel Bir Bakış ve Covid-19’ un Üretim Üzerine Etkisi. Bartın Orman Fakültesi Dergisi, 25(2), 320–339. https://doi.org/10.24011/BAROFD.1218040
  • Zachary, L. G., Bajak, H. W., & Eveline, F. J. (1965). Tall Oil and Its Uses. New York: McGraw Hill.
  • Zinkel, D. F. (1989). Naval Stores. Içinde J. W. Rowe (Ed.), Natural Products of Woody Plants (ss. 953–978). Berlin, Heidelberg: Springer.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Derlemeler
Yazarlar

Ahsen Ezel Bildik Dal 0000-0002-9525-2993

Mehmet Güle 0000-0001-6278-163X

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 27 Ekim 2023
Kabul Tarihi 12 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 3

Kaynak Göster

APA Bildik Dal, A. E., & Güle, M. (2023). COLOPHONY and It’s Derivatives as Corrosion Inhibitor Agent. JENAS Journal of Environmental and Natural Studies, 5(3), 231-236. https://doi.org/10.53472/jenas.1382148

JENAS | Journal of Environmental and Natural Studies