Araştırma Makalesi
BibTex RIS Kaynak Göster

AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi

Yıl 2019, Cilt: 31 - Özel Sayı I:, 23 - 32, 20.05.2019
https://doi.org/10.7240/jeps.457267

Öz



Bu çalışmada havacılık sanayinde yaygın kullanıma sahip
7075 alüminyum alaşımının yaşlandırılmasında farklı ön gerinmelerin alaşımın mekanik
özelliklerine etkileri incelenmiştir. Çalışmadaki temel amaç farklı oranlarda
şekillendirilmiş parçaların boya fırınlaması esnasındaki mekanik ve mikroyapı
özelliklerinin değişiminin belirlenmesidir. Boya fırınlama işlemlerinde
genellikle 120-200 ºC sıcaklıkları kullanılmaktadır. Bu kapsamda çalışmamızda yaşlandırma
sıcaklıkları 120, 160 ve 200 ºC olarak seçilmiştir. Numunelere farklı ön gerinmeler
uygulanarak ön gerinmenin yaşlandırmadaki etkisi detaylı olarak incelenmiştir. İncelemeler
sonucunda ön gerinmenin artmasıyla, 200 ºC yaşlandırma sıcaklığında akma
mukavemeti ve geri esneme düşerken, altındaki yaşlandırma sıcaklıklarında artmaktadır.
Bunun sebebi ise mikroyapıdaki MgZn2 katı çökeltilerinin hacimsel
miktarıdır.

Kaynakça

  • [1] Vasudevan, A. K., ve Doherty, R. D. (1989). Aluminum Alloys--Contemporary Research and Applications: Contemporary Research and Applications (Vol. 31). England: Elsevier
  • [2] Mondal, C., ve Mukhopadhyay, A. K. (2005). On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Materials Science and Engineering: A, 391(1), 367-376.
  • [3] Lalpour, A., Soltanipour, A., ve Farmanesh, K. (2015, 11,12 November 2015). Effect of Friction Stir Processing on the Microstructure and Superplasticity of 7075 Aluminum Alloy. Paper presented at the 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM15) Tehran, Iran.
  • [4] Fan, X.-G., Jiang, D.-M., Meng, Q.-C., Zhang, B.-Y., ve Tao, W. (2006). Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment. Transactions of Nonferrous Metals Society of China, 16(3), 577-581.
  • [5] Lim, S. T., Eun, I. S., ve Nam, S. W. (2003). Control of equilibrium phases (M, T, S) in the modified aluminum alloy 7175 for thick forging applications. Materials Transactions, 44(1), 181-187.
  • [6] Binesh, B., ve Aghaie-Khafri, M. (2016). Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy. Metals, 6(3), 42.
  • [7] Ozyurek, D., Yilmaz, R., ve Kibar, E. (2012). The effects of retrogression parameters in RRA treatment on tensile strength of 7075 aluminium alloys. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(1), 193-203.
  • [8] Polmear, I. (1996). Recent developments in light alloys. Materials Transactions, JIM, 37(1), 12-31.
  • [9] Hunsicker, H. (1976). Development of Al-Zn-Mg-CU alloys for aircraft. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 359-376.
  • [10] Emani, S., Benedyk, J., Nash, P., ve Chen, D. (2009). Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. Journal of Materials Science, 44(23), 6384-6391.
  • [11] Karaaslan, A., Kaya, I., ve Atapek, H. (2007). Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical properties of alloy AA 7075. Metal Science and Heat Treatment, 49(9), 443-447.
  • [12] Park, J., ve Ardell, A. (1983). Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical and Materials Transactions A, 14(10), 1957-1965.
  • [13] Tash, M. M., ve Alkahtani, S. (2015). Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys. Aging, 1, 7395.
  • [14] Joshi, A., Shastry, C., ve Levy, M. (1981). Effect of heat treatment on solute concentration at grain boundaries in 7075 aluminum alloy. Metallurgical Transactions A, 12(6), 1081-1088.
  • [15] Viana, F., Pinto, A. M. P., Santos, H. M. C., ve Lopes, A. B. (1999). Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. Journal of Materials Processing Technology, 92–93, 54-59.
  • [16] Pastor, A., ve Svoboda, H. G. (2013). Time-evolution of heat affected zone (HAZ) of friction stir welds of AA7075-T651. Journal of Materials Physics and Chemistry, 1(4), 58-64.
  • [17] Oskouei, R. H., Barati, M. R., ve Ibrahim, R. N. (2016). Surface characterizations of fretting fatigue damage in aluminum alloy 7075-T6 clamped joints: the beneficial role of Ni–P coatings. Materials, 9(3), 141.
  • [18] Fontana, M. G., ve Stactile, W. (1970). Corrosion Science and Technology. Plenum Press, London, 1, 149.
  • [19] Park, J. K., ve Ardell, A. J. (1989). Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AlZnMg alloys in various tempers. Materials Science and Engineering: A, 114(Supplement C), 197-203.
  • [20] Chen, J., Zhen, L., Yang, S., Shao, W., ve Dai, S. (2009). Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Materials Science and Engineering: A, 500(1), 34-42.
  • [21] Güleryüz, K., ve Kaçar, R. (2011). Deformasyon Yaşlanmasının AA7075 Alüminyum Alaşımının Mekanik Özelliklerine Etkisinin İncelenmesi. Paper presented at the 6th International Advanced Technologies Symposium (IATS’11).
  • [22] Porter, D. A., Easterling, K. E., ve Sherif, M. (2009). Phase Transformations in Metals and Alloys, (Revised Reprint). USA: CRC press
  • [23] Panigrahi, S. K., ve Jayaganthan, R. (2011). Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Metallurgical and Materials Transactions A, 42(10), 3208-3217.
  • [24] Polmear, I., ve Couper, M. (1988). Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metallurgical and Materials Transactions A, 19(4), 1027-1035.
  • [25] Clark, R., Coughran, B., Traina, I., Hernandez, A., Scheck, T., Etuk, C., Peters, J., Lee, E. W., Ogren, J., ve Es-Said, O. S. (2005). On the correlation of mechanical and physical properties of 7075-T6 Al alloy. Engineering Failure Analysis, 12(4), 520-526.
  • [26] Isadare, A. D., Aremo, B., Adeoye, M. O., Olawale, O. J., ve Shittu, M. D. (2013). Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Materials Research, 16(1), 190-194.
  • [27] Mahathaninwong, N., Plookphol, T., Wannasin, J., ve Wisutmethangoon, S. (2012). T6 heat treatment of rheocasting 7075 Al alloy. Materials Science and Engineering: A, 532(Supplement C), 91-99.
  • [28] Kilic, S., Ozturk, F., Sigirtmac, T., ve Tekin, G. (2015). Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel. Journal of Iron and Steel Research, International, 22(4), 361-365.
  • [29] Cao, L., Rometsch, P. A., ve Couper, M. J. (2013). Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A. Materials Science and Engineering: A, 571(Supplement C), 77-82.
  • [30] Li, S.-S., Chen, J.-S., Chen, J., Xia, C., ve Zeng, D. (2015). Influence of Pre-strain on the Mechanical Properties of A6111-T4P Sheet with Bake Hardening. Acta Metallurgica Sinica (English Letters), 28(6), 678-683.
  • [31] Kaçar, R., ve Güleryüz, K. (2015). Effect of Quenching Rate and Pre-strain on the Strain Ageing Behaviors of 7075 Aluminum Alloys. Materials Research, 18, 328-333.
  • [32] Rosalie, J. M., Somekawa, H., Singh, A., ve Mukai, T. (2013). Effect of precipitation on strength and ductility in a Mg–Zn–Y alloy. Journal of Alloys and Compounds, 550(Supplement C), 114-123.
  • [33] Ungár, T. (2004). Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51(8), 777-781.
  • [34] Moumeni, H., Alleg, S., Djebbari, C., Bentayeb, F. Z., ve Grenèche, J. M. (2004). Synthesis and characterisation of nanostructured FeCo alloys. Journal of Materials Science, 39(16), 5441-5443.
  • [35] Mehdaoui, S., Benslim, N., Aissaoui, O., Benabdeslem, M., Bechiri, L., Otmani, A., Portier, X., ve Nouet, G. (2009). Study of the properties of CuInSe2 materials prepared from nanoparticle powder. Materials Characterization, 60(5), 451-455.
  • [36] Benslim, N., Mehdaoui, S., Aissaoui, O., Benabdeslem, M., Bouasla, A., Bechiri, L., Otmani, A., ve Portier, X. (2010). XRD and TEM characterizations of the mechanically alloyed CuIn0.5Ga0.5Se2 powders. Journal of Alloys and Compounds, 489(2), 437-440.
  • [37] Dini, G., Najafizadeh, A., Monir-Vaghefi, S., ve Ueji, R. (2010). Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method. Journal of Materials Science & Technology, 26(2), 181-186.
  • [38] Karpikhin, A. E., Fedotov, A. Y., Komlev, V. S., Barinov, S. M., Sirotinkin, V. P., Gordeev, A. S., ve Shamrai, V. F. (2016). Structure of hydroxyapatite powders prepared through dicalcium phosphate dihydrate hydrolysis. Inorganic Materials, 52(2), 170-175.
  • [39] Heiba, Z. K., Mohamed, M. B., ve Wahba, A. M. (2016). Effect of Mo substitution on structural and magnetic properties of Zinc ferrite nanoparticles. Journal of Molecular Structure, 1108, 347-351.
  • [40] http://maud.radiographema.eu/. (January 2017).
  • [41] http://profex.doebelin.org/. (January 2017).
  • [42] https://www.ill.eu/sites/fullprof/. (January 2017).
  • [43] Kilic, S., ve Ozturk, F. (2016, 26-28 October). Evaluation of Mathematical Models Performances in XRD Analysis for Determination of Volumetric Ratios of Phases. Paper presented at the 1st International Mediterranean Science and Engineering Congress (IMSEC), Adana, Turkey.
  • [44] Bouras, M., Boumaiza, A., Ji, V., ve Rouag, N. (2012). XRD peak broadening characterization of deformed microstructures and heterogeneous behavior of carbon steel. Theoretical and Applied Fracture Mechanics, 61(Supplement C), 51-56.
  • [45] Fu, P., Chu, R., Xu, Z., Ding, G., ve Jiang, C. (2018). Relation of hardness with FWHM and residual stress of GCr15 steel after shot peening. Applied Surface Science, 431(Supplement C), 165-169.
  • [46] Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen, 2, 96-100.
  • [47] Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., ve Kumari, B. S. (2014). X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World Journal of Nano Science and Engineering, 4(01), 21.
  • [48] Khorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., ve Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), 251-256.
  • [49] Mote, V., Purushotham, Y., ve Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 6.
  • [50] Zhao, Y., ve Zhang, J. (2008). Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. Journal of applied Crystallography, 41(6), 1095-1108.
  • [51] Arabi Jeshvaghani, R., Emami, M., Shahverdi, H. R., ve Hadavi, S. M. M. (2011). Effects of time and temperature on the creep forming of 7075 aluminum alloy: Springback and mechanical properties. Materials Science and Engineering: A, 528(29–30), 8795-8799.
Yıl 2019, Cilt: 31 - Özel Sayı I:, 23 - 32, 20.05.2019
https://doi.org/10.7240/jeps.457267

Öz

Kaynakça

  • [1] Vasudevan, A. K., ve Doherty, R. D. (1989). Aluminum Alloys--Contemporary Research and Applications: Contemporary Research and Applications (Vol. 31). England: Elsevier
  • [2] Mondal, C., ve Mukhopadhyay, A. K. (2005). On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Materials Science and Engineering: A, 391(1), 367-376.
  • [3] Lalpour, A., Soltanipour, A., ve Farmanesh, K. (2015, 11,12 November 2015). Effect of Friction Stir Processing on the Microstructure and Superplasticity of 7075 Aluminum Alloy. Paper presented at the 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM15) Tehran, Iran.
  • [4] Fan, X.-G., Jiang, D.-M., Meng, Q.-C., Zhang, B.-Y., ve Tao, W. (2006). Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment. Transactions of Nonferrous Metals Society of China, 16(3), 577-581.
  • [5] Lim, S. T., Eun, I. S., ve Nam, S. W. (2003). Control of equilibrium phases (M, T, S) in the modified aluminum alloy 7175 for thick forging applications. Materials Transactions, 44(1), 181-187.
  • [6] Binesh, B., ve Aghaie-Khafri, M. (2016). Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy. Metals, 6(3), 42.
  • [7] Ozyurek, D., Yilmaz, R., ve Kibar, E. (2012). The effects of retrogression parameters in RRA treatment on tensile strength of 7075 aluminium alloys. Journal of the Faculty of Engineering and Architecture of Gazi University, 27(1), 193-203.
  • [8] Polmear, I. (1996). Recent developments in light alloys. Materials Transactions, JIM, 37(1), 12-31.
  • [9] Hunsicker, H. (1976). Development of Al-Zn-Mg-CU alloys for aircraft. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 359-376.
  • [10] Emani, S., Benedyk, J., Nash, P., ve Chen, D. (2009). Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. Journal of Materials Science, 44(23), 6384-6391.
  • [11] Karaaslan, A., Kaya, I., ve Atapek, H. (2007). Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical properties of alloy AA 7075. Metal Science and Heat Treatment, 49(9), 443-447.
  • [12] Park, J., ve Ardell, A. (1983). Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical and Materials Transactions A, 14(10), 1957-1965.
  • [13] Tash, M. M., ve Alkahtani, S. (2015). Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys. Aging, 1, 7395.
  • [14] Joshi, A., Shastry, C., ve Levy, M. (1981). Effect of heat treatment on solute concentration at grain boundaries in 7075 aluminum alloy. Metallurgical Transactions A, 12(6), 1081-1088.
  • [15] Viana, F., Pinto, A. M. P., Santos, H. M. C., ve Lopes, A. B. (1999). Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. Journal of Materials Processing Technology, 92–93, 54-59.
  • [16] Pastor, A., ve Svoboda, H. G. (2013). Time-evolution of heat affected zone (HAZ) of friction stir welds of AA7075-T651. Journal of Materials Physics and Chemistry, 1(4), 58-64.
  • [17] Oskouei, R. H., Barati, M. R., ve Ibrahim, R. N. (2016). Surface characterizations of fretting fatigue damage in aluminum alloy 7075-T6 clamped joints: the beneficial role of Ni–P coatings. Materials, 9(3), 141.
  • [18] Fontana, M. G., ve Stactile, W. (1970). Corrosion Science and Technology. Plenum Press, London, 1, 149.
  • [19] Park, J. K., ve Ardell, A. J. (1989). Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AlZnMg alloys in various tempers. Materials Science and Engineering: A, 114(Supplement C), 197-203.
  • [20] Chen, J., Zhen, L., Yang, S., Shao, W., ve Dai, S. (2009). Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Materials Science and Engineering: A, 500(1), 34-42.
  • [21] Güleryüz, K., ve Kaçar, R. (2011). Deformasyon Yaşlanmasının AA7075 Alüminyum Alaşımının Mekanik Özelliklerine Etkisinin İncelenmesi. Paper presented at the 6th International Advanced Technologies Symposium (IATS’11).
  • [22] Porter, D. A., Easterling, K. E., ve Sherif, M. (2009). Phase Transformations in Metals and Alloys, (Revised Reprint). USA: CRC press
  • [23] Panigrahi, S. K., ve Jayaganthan, R. (2011). Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Metallurgical and Materials Transactions A, 42(10), 3208-3217.
  • [24] Polmear, I., ve Couper, M. (1988). Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metallurgical and Materials Transactions A, 19(4), 1027-1035.
  • [25] Clark, R., Coughran, B., Traina, I., Hernandez, A., Scheck, T., Etuk, C., Peters, J., Lee, E. W., Ogren, J., ve Es-Said, O. S. (2005). On the correlation of mechanical and physical properties of 7075-T6 Al alloy. Engineering Failure Analysis, 12(4), 520-526.
  • [26] Isadare, A. D., Aremo, B., Adeoye, M. O., Olawale, O. J., ve Shittu, M. D. (2013). Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Materials Research, 16(1), 190-194.
  • [27] Mahathaninwong, N., Plookphol, T., Wannasin, J., ve Wisutmethangoon, S. (2012). T6 heat treatment of rheocasting 7075 Al alloy. Materials Science and Engineering: A, 532(Supplement C), 91-99.
  • [28] Kilic, S., Ozturk, F., Sigirtmac, T., ve Tekin, G. (2015). Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel. Journal of Iron and Steel Research, International, 22(4), 361-365.
  • [29] Cao, L., Rometsch, P. A., ve Couper, M. J. (2013). Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A. Materials Science and Engineering: A, 571(Supplement C), 77-82.
  • [30] Li, S.-S., Chen, J.-S., Chen, J., Xia, C., ve Zeng, D. (2015). Influence of Pre-strain on the Mechanical Properties of A6111-T4P Sheet with Bake Hardening. Acta Metallurgica Sinica (English Letters), 28(6), 678-683.
  • [31] Kaçar, R., ve Güleryüz, K. (2015). Effect of Quenching Rate and Pre-strain on the Strain Ageing Behaviors of 7075 Aluminum Alloys. Materials Research, 18, 328-333.
  • [32] Rosalie, J. M., Somekawa, H., Singh, A., ve Mukai, T. (2013). Effect of precipitation on strength and ductility in a Mg–Zn–Y alloy. Journal of Alloys and Compounds, 550(Supplement C), 114-123.
  • [33] Ungár, T. (2004). Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51(8), 777-781.
  • [34] Moumeni, H., Alleg, S., Djebbari, C., Bentayeb, F. Z., ve Grenèche, J. M. (2004). Synthesis and characterisation of nanostructured FeCo alloys. Journal of Materials Science, 39(16), 5441-5443.
  • [35] Mehdaoui, S., Benslim, N., Aissaoui, O., Benabdeslem, M., Bechiri, L., Otmani, A., Portier, X., ve Nouet, G. (2009). Study of the properties of CuInSe2 materials prepared from nanoparticle powder. Materials Characterization, 60(5), 451-455.
  • [36] Benslim, N., Mehdaoui, S., Aissaoui, O., Benabdeslem, M., Bouasla, A., Bechiri, L., Otmani, A., ve Portier, X. (2010). XRD and TEM characterizations of the mechanically alloyed CuIn0.5Ga0.5Se2 powders. Journal of Alloys and Compounds, 489(2), 437-440.
  • [37] Dini, G., Najafizadeh, A., Monir-Vaghefi, S., ve Ueji, R. (2010). Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method. Journal of Materials Science & Technology, 26(2), 181-186.
  • [38] Karpikhin, A. E., Fedotov, A. Y., Komlev, V. S., Barinov, S. M., Sirotinkin, V. P., Gordeev, A. S., ve Shamrai, V. F. (2016). Structure of hydroxyapatite powders prepared through dicalcium phosphate dihydrate hydrolysis. Inorganic Materials, 52(2), 170-175.
  • [39] Heiba, Z. K., Mohamed, M. B., ve Wahba, A. M. (2016). Effect of Mo substitution on structural and magnetic properties of Zinc ferrite nanoparticles. Journal of Molecular Structure, 1108, 347-351.
  • [40] http://maud.radiographema.eu/. (January 2017).
  • [41] http://profex.doebelin.org/. (January 2017).
  • [42] https://www.ill.eu/sites/fullprof/. (January 2017).
  • [43] Kilic, S., ve Ozturk, F. (2016, 26-28 October). Evaluation of Mathematical Models Performances in XRD Analysis for Determination of Volumetric Ratios of Phases. Paper presented at the 1st International Mediterranean Science and Engineering Congress (IMSEC), Adana, Turkey.
  • [44] Bouras, M., Boumaiza, A., Ji, V., ve Rouag, N. (2012). XRD peak broadening characterization of deformed microstructures and heterogeneous behavior of carbon steel. Theoretical and Applied Fracture Mechanics, 61(Supplement C), 51-56.
  • [45] Fu, P., Chu, R., Xu, Z., Ding, G., ve Jiang, C. (2018). Relation of hardness with FWHM and residual stress of GCr15 steel after shot peening. Applied Surface Science, 431(Supplement C), 165-169.
  • [46] Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen, 2, 96-100.
  • [47] Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., ve Kumari, B. S. (2014). X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World Journal of Nano Science and Engineering, 4(01), 21.
  • [48] Khorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., ve Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), 251-256.
  • [49] Mote, V., Purushotham, Y., ve Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 6.
  • [50] Zhao, Y., ve Zhang, J. (2008). Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. Journal of applied Crystallography, 41(6), 1095-1108.
  • [51] Arabi Jeshvaghani, R., Emami, M., Shahverdi, H. R., ve Hadavi, S. M. M. (2011). Effects of time and temperature on the creep forming of 7075 aluminum alloy: Springback and mechanical properties. Materials Science and Engineering: A, 528(29–30), 8795-8799.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Süleyman Kılıç 0000-0002-1681-9403

İlyas Kacar Bu kişi benim 0000-0002-5887-8807

Fahrettin Öztürk 0000-0001-9517-7957

Mevlüt Şahin 0000-0002-6659-3756

Oğuz Erdem 0000-0002-8094-3222

Yayımlanma Tarihi 20 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 31 - Özel Sayı I:

Kaynak Göster

APA Kılıç, S., Kacar, İ., Öztürk, F., Şahin, M., vd. (2019). AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 31, 23-32. https://doi.org/10.7240/jeps.457267
AMA Kılıç S, Kacar İ, Öztürk F, Şahin M, Erdem O. AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi. JEPS. Mayıs 2019;31:23-32. doi:10.7240/jeps.457267
Chicago Kılıç, Süleyman, İlyas Kacar, Fahrettin Öztürk, Mevlüt Şahin, ve Oğuz Erdem. “AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 31, Mayıs (Mayıs 2019): 23-32. https://doi.org/10.7240/jeps.457267.
EndNote Kılıç S, Kacar İ, Öztürk F, Şahin M, Erdem O (01 Mayıs 2019) AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences 31 23–32.
IEEE S. Kılıç, İ. Kacar, F. Öztürk, M. Şahin, ve O. Erdem, “AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi”, JEPS, c. 31, ss. 23–32, 2019, doi: 10.7240/jeps.457267.
ISNAD Kılıç, Süleyman vd. “AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 31 (Mayıs 2019), 23-32. https://doi.org/10.7240/jeps.457267.
JAMA Kılıç S, Kacar İ, Öztürk F, Şahin M, Erdem O. AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi. JEPS. 2019;31:23–32.
MLA Kılıç, Süleyman vd. “AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences, c. 31, 2019, ss. 23-32, doi:10.7240/jeps.457267.
Vancouver Kılıç S, Kacar İ, Öztürk F, Şahin M, Erdem O. AA7075 Yaşlandırılmasında Farklı Ön Gerinmelerin Mekanik Özelliklere Etkilerinin İncelenmesi. JEPS. 2019;31:23-32.