Araştırma Makalesi

Geri Çekildi: Farklı uzunluklarda dinamik kalça vidası yan plakaları ile intertrakkanterik kalça kırığı tedavisinin biyomekanik analizi

Yıl 2019, Cilt: 31 Sayı: 4, 355 - 361, 01.11.2019
https://doi.org/10.7240/jeps.607857
Bu makale 31 Aralık 2023 tarihinde geri çekildi. https://dergipark.org.tr/tr/pub/jeps/issue/82023/1371375

Öz

Dinamik kalça vidası (DKV), stabil tip intertrokanterik kalça
kırıklarını tedavi etmek için kullanılan yaygın bir implanttır. Cerrahinin
başarısını etkileyebilecek birçok faktör vardır. Yan plakaların uzunluğu
faktörlerden biridir. Bu nedenle, DKV yan plakaların uzunluklarının
biyomekaniğini araştırmak önemlidir. İmplant başarısızlıklarını azaltmak ve
farklı uzunluklarda yan plaka etkilerini anlamak için, bu çalışmanın amacı
DKV'daki farklı uzunluklarda yan plakaları araştırmak için sonlu elemanlar
analizini kullanmaya çalışmaktadır. Bu sonlu elemanlar analizi çalışması,
farklı uzunluklarda yan plaka (2 delikli, 4 delikli ve 6 delikli) DKV
implantasyonunu simüle etmek için kortikal kemik, süngerimsi kemik, yan plaka,
gecikme vidası ve kortikal vidalı bir 3D model inşa etti. intertrokanterik
kalça kırıkları için. Yükleme koşulu, bir süje dik dururken femur başı
üzerindeki kuvveti (400N) simüle etmek için kullanılır. Bu çalışma gecikme
vidası, yan plaka, kortikal vidalar ve femurdaki stres dağılımını araştırdı. En
büyük stres, vidaların kortikal kemiklerle temas ettiği noktaların çevresinde
meydana geldi. Femurdaki en distal kortikal vidadaki stres en büyüktü. Yan
plakanın uzunluğu kısaldıkça kortikal vidalar üzerindeki stres artar ve bu da
kortikal vidaları çevreleyen femur üzerindeki stresi arttırır. Yan plakanın
uzunluğu (2 delikli yan plaka) ve femur üzerindeki en uzak vida ile DHS
kullanımı, yan plakanın dışarı çekilme riskini artırabilir. Bu çalışmanın
sonuçları, ortopedik cerrahlar tarafından DKV implant uzunluklarının seçilmesi
için biyomekanik bir analiz sağlayabilir.

Kaynakça

  • [1] Kaplan K, Miyamoto R, Levine BR, Egol KA, Zuckerman JD, Surgical Management of Hip Fractures: An Evidence‐based Review of the Literature. II: Intertrochanteric Fractures, J Am Acad Orthop Surg 16(11):665-673, 2008.[2] Ahn, J, Bernstein J, Fractures in brief: intertrochanteric hip fractures, Clin Orthop Relat Res 468(5):1450-1452, 2010.[3] Lorich DG, Geller DS, Nielson, JH, Osteoporotic pertrochanteric hip fractures: management and current controversies, J Bone Joint Surg Am 86(2):398-410, 2004.[4] Mainds CC, Newman RJ, Implant failures in patients with proximal fractures of the femur treated with a sliding screw device, Injur,20(2):98-100, 1989.[5] Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG, Intertrochanteric femoral fractures. Mechanical failure after internal fixation, J Bone Joint Surg Br 72(1):26-31, 1990.[6] Spivak JM, Zuckerman JD, Kummer FJ, Frankel VH, Fatigue failure of the sliding screw in hip fracture fixation: a report of three cases, J Orthop Trauma 5(3):325-331, 1991.[7] Arastu MH, Phillips L, Duffy P, An unusual failure of a sliding hip screw in the immediate post-operative period, Inj Extra 44(2):23-27, 2013.[8] Amis AA, Bromage JD, Larvin M, Fatigue fracture of a femoral sliding compression screw-plate device after bone union, Biomaterials 8(2):153–157, 1987.[9] Haidukewych GJ, Intertrochanteric fractures: ten tips to improve results, J Bone Joint Surg Am 91(3):712–719, 2009.[10] Rubio-Avila J, Madden K, Simunovic N, Bhandari M, Tip to apex distance in femoral intertrochanteric fractures: A systematic review, J Orthop Sci 18(4):592–598, 2013.[11] Andruszkow H, Frink M, Frömke C, Matityahu A, Zeckey C, Mommsen P, Suntardjo S, Krettek C, Hildebrand F, Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures, Int Orthops 36(11):2347–2354, 2012.[12] Sommers MB, Roth C, Hall H, Kam BC, Ehmke LW, Krieg JC, Madey SM, Bottlang M, A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation, J Orthop Trauma 18(6):361-368, 2004.[13] Laohapoonrungsee A, Arpornchayanon O, Phornputkul C, Two-hole side-plate DHS in the treatment of intertrochanteric fracture: Results and complications, Injury 36(11):1355–1360, 2005.[14] Ríha D, Bartonícek J, Internal fixation of pertrochanteric fractures using DHS with a two-hole side-plate, Int Orthop 34(6):877–882, 2010.[15] Bolhofner BR, Russo PR, Carmen B, Results of intertrochanteric femur fractures treated with a 135-degree sliding screw with a two-hole side plate, J Orthop Trauma 13(1):5-8, 1999.[16] DiPaola M, Rozbruch SR, Helfet DL, Minimal incision technique using a two-hole plate for fixation of stable intertrochanteric hip fractures, Orthopedics 27(3):270–274, 2004.[17] Baird RP, O’brien P, Cruickshank D, Comparison of stable and unstable pertrochanteric femur fractures managed with 2-and 4-hole side plates, Can J Surg 57(5):327-330, 2014.[18] McLoughlin SW, Wheeler DL, Rider J, Bolhofner B, Biomechanical evaluation of the dynamic hip screw with two- and four-hole side plates, J Orthop Trauma 14(5):318-323, 2000.[19] 19. Rooppakhun S, Siamuna K, Finite element analysis of dynamic hip screw for intertrochanteric fracture, Int J Model Opt 2(2):158-161, 2012.[20] Yian EH, Banerji I, Matthews LS, Optimal side plate fixation for unstable intertrochanteric hip fractures, J Orthop Trauma 11(4):254-259, 1997.[21] Rog D, Grigsby P, Hill Z, Pinette W, Inceoglu S, Zuckerman L, A biomechanical comparison of the two- and four-hole side-plate dynamic hip screw in an osteoporotic composite femur model, J Orthop Surg 25(2):1-6, 2017.[22] Chen DW, Lin CL, Hu CC, Wu JW, Lee MS, Finite element analysis of different repair methods of Vancouver B1 periprosthetic fractures after total hip arthroplasty, Injury 43(7):1061–1065, 2012.[23] Seral B, García JM, Cegoñino J, Doblaré M, Seral F, Finite element study of intramedullary osteosynthesis in the treatment of trochanteric fractures of the hip: Gamma and PFN, Injury 35(2):130-135, 2004.[24] Taheri NS, Blicblau AS, Singh M, Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel, J Orthop Sci 16(6):805–813, 2011.[25] Tzeng CY, Huang KC, Wu YC, Chang CL, Lee KR, Su KC, Biomechanical effect of different lag screw lengths with different barrel lengths in dynamic hip screw system: a finite element study, J Mech Med Biol 17(1):1750008, 2017.[26] Hofmann-Fliri L, Nicolino TI, Barlaet J , Gueorguiev B, Richards RG, Blauth M,Windolf M, Cement augmentation of implants—no general cure in osteoporoticfracture treatment. A biomechanical study on non-displaced femoral neck fractures, JOrthop Res, 34(2):314-319, 2016.[27] Lee HH, Finite Element Simulations with ANSYS Workbench 15. Taiwan: Chuan Hwa Book Co.; 2014.[28] Ke MJ, Huang KC, Lee CH, Chu HY, Wu YT, Chang ST, Chiang SL, Su KC, Influence of three different curvatures flex-foot prosthesis while single-leg standing or running: a finite element analysis study, J Mech Med Biol 17(3):1750055, 2017.[29] Goffin JM, Pankaj P, Simpson AH, The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study, J Orthop Res 2013;31:596-600, 2013.[30] Enderle JD, Bronzino JD, Introduction to Biomedical Engineering. Burlington, MA: Academic Press; 2012.[31] Zand MS, Goldstein SA, Matthews LS, Fatigue failure of cortical bone screws, J Biomech 16(5):305-311, 1983.[32] Bartel DL, Davy DT, Keaveny TM, Orthopaedic biomechanics: mechanics and design in musculoskeletal systems, Pearson Prentice Hall, Upper Saddle River, 2006.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Oğuz Kayabaşı 0000-0003-0129-1113

Yayımlanma Tarihi 1 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 31 Sayı: 4