Research Article
BibTex RIS Cite

Performance evaluation of photovoltaic thermal hybrid system using copper oxide nanofluids

Year 2025, Volume: 9 Issue: 1, 23 - 35, 31.03.2025
https://doi.org/10.30521/jes.1485400

Abstract

The effect of cooling a flat plate collector integrated photovoltaic thermal (PVT) hybrid system with copper oxide nanofluid at different concentrations was compared with a non-cooled system. The Photovoltaic thermal hybrid system was designed with an efficient serpentine coil-based thermal absorber setup and was tested using various nanofluid concentrations. Copper oxide nanofluid empowered the system to attain significant electrical and thermal performance at higher concentrations. The electrical efficiency of the hybrid photovoltaic system increased by 17.61% at 0.05 M nanofluid concentration. The average value of the thermal efficiency increased by 71.17% at 0.05M nanofluid concentration. The thermal efficiency of the nanofluid-cooled module was found to be much better due to the improved heat absorption of nanoparticles. The solar panel surface temperature of the nanofluid-cooled system reduced from 68.4 ℃ (non-cooled system) to 44.74 ℃ (0.05 M) at noon. The highest efficiency values are achieved at a 0.05 M concentration of nanofluid.

Ethical Statement

No ethical issues involved

Supporting Institution

ICAR- Central Institute of Fisheries Technology,Cochin

Thanks

The study effort received financial support from the Department of Science and Technology. (Govt. of India). The study also received support from the Engineering Division of ICAR-Central Institute of Fisheries Technology, Cochin, Kerala.

References

  • [1] Parthiban A, Reddy KS, Pesala B, Mallick TK. Effects of operational and environmental parameters on the performance of a solar photovoltaic-thermal collector. Energy Conversion and Management. 2020;205:112428. doi:10.1016/j.enconman.2019.112428
  • [2] Wang Z, Wei J, Zhang G, Xie H, Khalid M. Design and performance study on a large-scale hybrid CPV/T system based on unsteady-state thermal model. Solar Energy. 2019;177:427-439. doi:10.1016/j.solener.2018.11.043
  • [3] Kim JH, Kim JT. The experimental performance of an unglazed PV-thermal collector with a fully wetted absorber. Energy Procedia. 2012;30:144-151. doi:10.1016/j.egypro.2012.11.018
  • [4] Tonui JK, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low-cost performance improvements. Solar Energy. 2007;81(4):498-511. doi:10.1016/j.solener.2006.08.002
  • [5] Jidhesh P, Arjunan TV, Gunasekar N, Mohanraj M. Experimental thermodynamic performance analysis of semi-transparent photovoltaic-thermal hybrid collectors using nanofluids. J Process Mech Eng. 2021;235(5):1639-1651. doi:10.1177/09544089211013663
  • [6] Tiwari MK, Mishra V, Dev R, Singh N. Effects of active cooling techniques to improve the overall efficiency of photovoltaic module - An updated review. E3S Web Conf. 2023;387:01012.
  • [7] Kim JH, Kim JT. The experimental performance of an unglazed PVT collector with two different absorber types. Int J Photoenergy. 2012;2012:312168. doi:10.1155/2012/312168
  • [8] Charde AA, Wele DV, Thorat PV. Synthesis and characterization of water-based silver nanofluids. Int J Electron Commun Soft Comput Sci Eng. 2015;344-346.
  • [9] Yu W, Xie H. A review on nanofluids: Preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:435873. doi:10.1155/2012/435873
  • [10] Sharma P, Kumar V, Sokhal GS, Dasaroju G, Bulasara VK. Numerical study on performance of flat tube with water-based copper oxide nanofluids. Mater Today Proc. 2020;21:1800-1808. doi:10.1016/j.matpr.2020.01.234
  • [11] Shakir AK, Hajidavalloo E, Daneh-Dezfuli A, Abdulhaleem SM, Obayes OK. Experimental study on the performance of different photovoltaic thermal collectors with nano-technology. Energy Sources Part A: Recovery Util Environ Eff. 2023;45(3):8458-8477.
  • [12] Ibrahim A, Ramadan MR, Khallaf AEM, Abdulhamid MA. Comprehensive study for Al₂O₃ nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions. Environ Sci Pollut Res. 2023;30(49):106838-106859. doi:10.1007/s11356-023-25928-3
  • [13] Lee JH, Hwang SG, Lee GH. Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies. 2019;12(16):3063. doi:10.3390/en12163063
  • [14] Yu Y, Long E, Chen X, Yang H. Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin. Appl Energy. 2019;242:931-941. doi:10.1016/j.apenergy.2019.03.114
  • [15] Holman JP. Experimental methods for engineers. McGraw-Hill Series in Mechanical Engineering. 2012;761p.
  • [16] Alzaabi AA, Badawiyeh NK, Hantoush HO, Hamid AK. Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. Int J Smart Grid Clean Energy. 2014;3(4):385-389. doi:10.12720/sgce.3.4.385-389
  • [17] Abdallah SR, Elsemary IM, Altohamy AA, Abdelrahman MA, Attia AA, Abdellatif OE. Experimental investigation on the effect of using nanofluid (Al₂O₃-Water) on the performance of PV/T system. Therm Sci Eng Prog. 2018;7:1-7. doi:10.1016/j.tsep.2018.04.016
  • [18] Elayarani E, Mathiazhagan P. Improvement of efficiency on PV/T collector using nanofluids. Int J Curr Eng Sci Res. 2017;49(12):66-72.
  • [19] Kazem HA, Chaichan MT, Al-Waeli AH, Jarimi H, Ibrahim A, Sopian K. Effect of temperature on the electrical and thermal behaviour of a photovoltaic/thermal system cooled using SiC nanofluid: An experimental and comparison study. Sustainability. 2022;14(19):11897. doi:10.3390/su141911897
  • [20] Lari MO, Sahin AZ. Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications. Renew Energy. 2018;122:98-107. doi:10.1016/j.renene.2018.01.034
  • [21] Kazem HA, Chaichan MT, Al-Waeli AH. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: An experimental study. Energy Sources Part A: Recovery Util Environ Eff. 2022;44(2):3673-3691. doi:10.1080/15567036.2022.2070305
  • [22] Zamen M, Kahani M, Rostami B, Bargahi M. Application of Al₂O₃/water nanofluid as the coolant in a new design of photovoltaic/thermal system: An experimental study. Energy Sci Eng. 2022;100:1-13. doi:10.1002/ese3.1067
  • [23] Yousefi T, Veysi F, Shojaeizadeh E, Zinadin S. An experimental investigation on the effect of Al₂O₃–H₂O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39(1):293-298. doi:10.1016/j.renene.2011.08.056
  • [24] Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al₂O₃, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag. 2017;148:63-73. doi:10.1016/j.enconman.2017.06.072
  • [25] Alktranee M, Shehab MA, Németh Z, Bencs P, Hernadi K. Effect of Zirconium oxide nanofluid on the behavior of photovoltaic–thermal system: An experimental study. Energy Reports. 2023;9:1265-1277. doi:10.1016/j.egyr.2022.12.065
Year 2025, Volume: 9 Issue: 1, 23 - 35, 31.03.2025
https://doi.org/10.30521/jes.1485400

Abstract

References

  • [1] Parthiban A, Reddy KS, Pesala B, Mallick TK. Effects of operational and environmental parameters on the performance of a solar photovoltaic-thermal collector. Energy Conversion and Management. 2020;205:112428. doi:10.1016/j.enconman.2019.112428
  • [2] Wang Z, Wei J, Zhang G, Xie H, Khalid M. Design and performance study on a large-scale hybrid CPV/T system based on unsteady-state thermal model. Solar Energy. 2019;177:427-439. doi:10.1016/j.solener.2018.11.043
  • [3] Kim JH, Kim JT. The experimental performance of an unglazed PV-thermal collector with a fully wetted absorber. Energy Procedia. 2012;30:144-151. doi:10.1016/j.egypro.2012.11.018
  • [4] Tonui JK, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low-cost performance improvements. Solar Energy. 2007;81(4):498-511. doi:10.1016/j.solener.2006.08.002
  • [5] Jidhesh P, Arjunan TV, Gunasekar N, Mohanraj M. Experimental thermodynamic performance analysis of semi-transparent photovoltaic-thermal hybrid collectors using nanofluids. J Process Mech Eng. 2021;235(5):1639-1651. doi:10.1177/09544089211013663
  • [6] Tiwari MK, Mishra V, Dev R, Singh N. Effects of active cooling techniques to improve the overall efficiency of photovoltaic module - An updated review. E3S Web Conf. 2023;387:01012.
  • [7] Kim JH, Kim JT. The experimental performance of an unglazed PVT collector with two different absorber types. Int J Photoenergy. 2012;2012:312168. doi:10.1155/2012/312168
  • [8] Charde AA, Wele DV, Thorat PV. Synthesis and characterization of water-based silver nanofluids. Int J Electron Commun Soft Comput Sci Eng. 2015;344-346.
  • [9] Yu W, Xie H. A review on nanofluids: Preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:435873. doi:10.1155/2012/435873
  • [10] Sharma P, Kumar V, Sokhal GS, Dasaroju G, Bulasara VK. Numerical study on performance of flat tube with water-based copper oxide nanofluids. Mater Today Proc. 2020;21:1800-1808. doi:10.1016/j.matpr.2020.01.234
  • [11] Shakir AK, Hajidavalloo E, Daneh-Dezfuli A, Abdulhaleem SM, Obayes OK. Experimental study on the performance of different photovoltaic thermal collectors with nano-technology. Energy Sources Part A: Recovery Util Environ Eff. 2023;45(3):8458-8477.
  • [12] Ibrahim A, Ramadan MR, Khallaf AEM, Abdulhamid MA. Comprehensive study for Al₂O₃ nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions. Environ Sci Pollut Res. 2023;30(49):106838-106859. doi:10.1007/s11356-023-25928-3
  • [13] Lee JH, Hwang SG, Lee GH. Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies. 2019;12(16):3063. doi:10.3390/en12163063
  • [14] Yu Y, Long E, Chen X, Yang H. Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin. Appl Energy. 2019;242:931-941. doi:10.1016/j.apenergy.2019.03.114
  • [15] Holman JP. Experimental methods for engineers. McGraw-Hill Series in Mechanical Engineering. 2012;761p.
  • [16] Alzaabi AA, Badawiyeh NK, Hantoush HO, Hamid AK. Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. Int J Smart Grid Clean Energy. 2014;3(4):385-389. doi:10.12720/sgce.3.4.385-389
  • [17] Abdallah SR, Elsemary IM, Altohamy AA, Abdelrahman MA, Attia AA, Abdellatif OE. Experimental investigation on the effect of using nanofluid (Al₂O₃-Water) on the performance of PV/T system. Therm Sci Eng Prog. 2018;7:1-7. doi:10.1016/j.tsep.2018.04.016
  • [18] Elayarani E, Mathiazhagan P. Improvement of efficiency on PV/T collector using nanofluids. Int J Curr Eng Sci Res. 2017;49(12):66-72.
  • [19] Kazem HA, Chaichan MT, Al-Waeli AH, Jarimi H, Ibrahim A, Sopian K. Effect of temperature on the electrical and thermal behaviour of a photovoltaic/thermal system cooled using SiC nanofluid: An experimental and comparison study. Sustainability. 2022;14(19):11897. doi:10.3390/su141911897
  • [20] Lari MO, Sahin AZ. Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications. Renew Energy. 2018;122:98-107. doi:10.1016/j.renene.2018.01.034
  • [21] Kazem HA, Chaichan MT, Al-Waeli AH. Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: An experimental study. Energy Sources Part A: Recovery Util Environ Eff. 2022;44(2):3673-3691. doi:10.1080/15567036.2022.2070305
  • [22] Zamen M, Kahani M, Rostami B, Bargahi M. Application of Al₂O₃/water nanofluid as the coolant in a new design of photovoltaic/thermal system: An experimental study. Energy Sci Eng. 2022;100:1-13. doi:10.1002/ese3.1067
  • [23] Yousefi T, Veysi F, Shojaeizadeh E, Zinadin S. An experimental investigation on the effect of Al₂O₃–H₂O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39(1):293-298. doi:10.1016/j.renene.2011.08.056
  • [24] Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al₂O₃, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag. 2017;148:63-73. doi:10.1016/j.enconman.2017.06.072
  • [25] Alktranee M, Shehab MA, Németh Z, Bencs P, Hernadi K. Effect of Zirconium oxide nanofluid on the behavior of photovoltaic–thermal system: An experimental study. Energy Reports. 2023;9:1265-1277. doi:10.1016/j.egyr.2022.12.065
There are 25 citations in total.

Details

Primary Language English
Subjects Energy, Solar Energy Systems
Journal Section Research Articles
Authors

Govind S Menon 0000-0002-7072-2274

Jacob Elias 0000-0003-0700-148X

Murali S 0000-0001-6614-2202

Manoj P Samuel 0000-0003-2403-4590

Early Pub Date March 15, 2025
Publication Date March 31, 2025
Submission Date May 17, 2024
Acceptance Date March 4, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

Vancouver S Menon G, Elias J, S M, P Samuel M. Performance evaluation of photovoltaic thermal hybrid system using copper oxide nanofluids. Journal of Energy Systems. 2025;9(1):23-35.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0