TOZ METAL 316L PASLANMAZ ÇELİĞE HİDROKSİAPATİT VE Al2O3 İLAVESİNİN SERTLİK VE MİKROYAPI ÖZELLİKLERİNE ETKİSİ
Yıl 2022,
Cilt: 3 Sayı: 2, 23 - 32, 18.12.2022
Mehmet Akif Erden
,
Abkar Ahmed Ali Dhaıbaın
Ahmet Serdar Güldibi
Öz
Toz metalürjisi (TM) seri üretim ile ekonomik ve üretim sırasında kayıpsız veya maksimum yaklaşık %3 atık malzeme üretiminin yanısıra ikincil bir işlem gerektirmemesi gibi özelliklere sahip olan müstakil üretim yöntemidir. Bu üstün özellikler sayesinde gün geçtikçe tercih edilebilirliği artmakta ve diğer bilinen geleneksel yöntemlere de alternatif olmaktadır. TM yöntemi ile üretilen parçalar, diğer yöntemlere kıyasla son şekle yakın pürüzsüz, temiz bir yüzeye sahiptir ve çoğunlukla ikincil bir uygulamaya ihtiyaç duyulmamaktadır. Paslanmaz çelikler ise oldukça iyi mekanik özellikleri, yüksek ve düşük sıcaklıklarda mekanik özelliklerini muhafaza edebilmesinin yansıra aşınma ve korozyon direncinin oldukça iyi olması nedeniyle biyomedikal endüstrisi gibi birçok sektörde sıklıkla tercih edilen malzeme grubu olarak bilinmektedirler. Bu çalışmada toz metalürjisi teknolojisi aracılığıyla 316L paslanmaz çelik matrisi içerisine belirlenen miktarlarda (yüzde ağırlık olarak 0,5) Hidroksiapatit (HA) ve Al2O3 elementi tozları tekli veya ikili olarak ilave edilmiş ve istenilen bileşim toz karışım olarak elde edilmiştir. Çalışmada kullanılan tozlar Ø32 mm çapında silindir kalıpta 700 MPa sıkıştırma basıncı altında tek yönlü olarak soğuk preslenmiş ve blok haline getirilmiştir. Presleme işlemi sonrası ham mukavemete sahip numuneler atmosfer kontrollü tüp fırında argon atmosferi ortamında 1200℃ de iki saat boyunca sinterlenmiştir. Ayrıca üretilen numunelerin mikroyapı ve mekanik özellikleri optik mikroskop ve sertlik testleri ile analiz edilmiştir. Sonuçlar, 316L paslanmaz çeliğe ağırlık olarak %0,5 Al2O3 ilave edilen kompozisyona sahip paslanmaz çelik numunelerin en yüksek sertlik dayanımına sahip olduğunu göstermiştir. Ayrıca 316L paslanmaz çeliğe % 0,5 Al2O3, % 0,5HA ve % 0,5 (Al2O3 +HA) ilavesiyle Al2O3 ve HA içermeyen 316L numuneye göre sertlik dayanımının daha üstün olmalarına rağmen % 0,5 (Al2O3 +HA) ilavesiyle sertlik dayanımlarında düşüş gözlenmiştir.
Destekleyen Kurum
Karabük Üniversitesi Rektörlüğü BAP Koordinatörlüğü
Proje Numarası
KBÜBAP-22-DS-062
Teşekkür
Bu çalışma, Karabük Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri KBÜBAP-22-DS-062 numarası altında gerçekleştirilmiştir. Bu nedenle bu çalışmayı destekleyen Karabük Üniversitesi Rektörlüğü BAP Koordinatörlüğü teşekkürlerimizi sunarız.
Kaynakça
- [1] M. Türkmen, M. A. Erden, H. Karabulut, S. Gündüz. “The Effects of Heat Treatment on the Microstructure and Mechanical Properties of Nb V Microalloyed Powder Metallurgy Steels”, Acta Physıca Polonıca A, vol. 135, no. 4, pp. 834–36, 2019.
- [2] M. A. Erden, B. Ayvacı. “The Effect on Mechanical Properties of Pressing Technique in PM Steels”. Acta Physıca Polonıca A, vol. 135, no. 5, pp. 1078–1080, 2019.
- [3] H. Şimşir, Y. Akgül, M. A. Erden. “Hydrothermal Carbon Effect on Iron Matrix Composites Produced by Powder Metallurgy.” Materials Chemistry and Physics, vol. 242, pp. 122557, February 2020.
- [4] M. A. Erden, S. Gündüz, H. Karabulut, M. Türkmen. “Wear behaviour of sintered steels obtained using powder metallurgy method”. Mechanics, vol. 23, no. 4, pp. 574-580, 2017.
- [5] Mehmet Akif Erden, Ahmet Mustafa Erer, Çağrı Odabaşı, Süleyman Gündüz. “The Investıgatıon Of The Effect Of Cu Addıtıon On The Nb-V Mıcroalloyed Steel Produced By Powder Metallurgy”. Science of Sintering, vol. 54, no. 2, pp. 153-167, 2022.
- [6] K. H. Lo, C. H. Shek, and J. K. L. Lai, “Recent developments in stainless steels,” Materials Science and Engineering: R: Reports, vol. 65, no. 4–6, pp. 39–104, May 2009, doi: 10.1016/J.MSER.2009.03.001.
- [7] A. Saha Podder and A. Bhanja, “Applications of Stainless Steel in Automobile Industry,” Advanced Materials Research, vol. 794, pp. 731–740, 2013, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.794.731.
- [8] N. Kurgan, Y. Sun, B. Cicek, and H. Ahlatci, “Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties,” Chinese Science Bulletin 2012 57:15, vol. 57, no. 15, pp. 1873–1878, Mar. 2012, doi: 10.1007/S11434-012-5022-5.
- [9] R. Esmaeilzadeh, M. Salimi, C. Zamani, A. M. Hadian, and A. Hadian, “Effects of milling time and temperature on phase evolution of AISI 316 stainless steel powder and subsequent sintering,” Journal of Alloys and Compounds, vol. 766, pp. 341–348, Oct. 2018, doi: 10.1016/J.JALLCOM.2018.06.325.
- [10] J. Zhou, Y. Sun, S. Huang, J. Sheng, J. Li, and E. Agyenim-Boateng, “Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy,” Optics & Laser Technology, vol. 109, pp. 263–269, Jan. 2019, doi: 10.1016/J.OPTLASTEC.2018.08.005.
- [11] R. Ahmadi and S. Izanloo, “Development of HAp/GO/Ag coating on 316 LVM implant for medical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 126, p. 105075, Feb. 2022, doi: 10.1016/J.JMBBM.2022.105075.
- [12] N. S. Manam et al., “Study of corrosion in biocompatible metals for implants: A review,” Journal of Alloys and Compounds, vol. 701, pp. 698–715, Apr. 2017, doi: 10.1016/J.JALLCOM.2017.01.196.
- [5] H. H. Al-Moameri, Z. M. Nahi, D. R. Rzaij, and N. T. Sharify, “View Of A Revıew On The Bıomedıcal Applıcatıons Of Alumına.” https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/105/94 (accessed Jun. 02, 2022).
[13] A. J. Ruys, “Introduction to metal-reinforced ceramics,” Metal-Reinforced Ceramics, pp. 1–20, Jan. 2021, doi: 10.1016/B978-0-08-102869-8.00001-X.
- [14] K. Shanmugam and R. Sahadevan, “Bioceramics—An introductory overview,” Fundamental Biomaterials: Ceramics, pp. 1–46, Jan. 2018, doi: 10.1016/B978-0-08-102203-0.00001-9.
- [15] Z. Evis, “Çeşitli İyonlar Eklenmiş Nano- Mekanik ve Biyouyumluluk Özellikleri,” International Journal of Research and Development, vol. 3, no. 1, 2011, [Online]. Available: https://dergipark.org.tr/en/download/article-file/353321
- [16] E. N. James, C. Hanna, and L. S. Nair, “Nanobiomaterials for Tissue Engineering Applications,” Stem Cell Biology and Tissue Engineering in Dental Sciences, pp. 221–234, Jan. 2015, doi: 10.1016/B978-0-12-397157-9.00018-7.
- [17] T. Çayir, Y. Akaltun, Ö. Gündoğdu, E. Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü, E. Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü, and K. Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü, “Dergisi Science and Eng,” J of Fırat Univ, vol. 28, no. 1, pp. 1–5, 2016.
- [18] N. Çiftçi, “Sol-jel yöntemi ile 316 LSS ve Ti implant malzemelerin üzerine hydroxyapatite (HAP) kaplamaların üretilmesi ve korozyon davranışlarının elektrokimyasal yöntemle incelenmesi.” Accessed: Jun. 02, 2022. [Online]. Available: https://acikbilim.yok.gov.tr/handle/20.500.12812/41323
- [19] F. Ak Azem and A. Çakır, “Sol-Jel Yöntemi ile İmplant Kalite 316L Paslanmaz Çelik Üzerine Üretilen Hidroksiapatit Kaplamaların Morfolojisi Üzerine Isıl İşlem Rejiminin Etkisi.” Accessed: Jun. 02, 2022. [Online]. Available: https://earsiv.anadolu.edu.tr/xmlui/handle/11421/1670
- [20] A. Büyüksağiş, “316L paslanmaz çelik ve Ti6Al4V alaşımı üzerine sol jel yöntemi ile hidroksiapatit (HAP) kaplanması | TR Dizin.” https://app.trdizin.gov.tr/makale/TVRFeU1qYzJOZz09 (accessed Jun. 02, 2022).
- [21] K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” Journal of Materials Engineering and Performance, vol. 25, no. 10, pp. 4469–4477, Oct. 2016, doi: 10.1007/S11665-016-2306-Y/FIGURES/9.
- [22] K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” Journal of Materials Engineering and Performance, vol. 25, no. 10, pp. 4469–4477, Oct. 2016, Accessed: Jun. 20, 2022. [Online]. Available: https://link.springer.com/article/10.1007/s11665-016-2306-y
- [23] M. A. Hussain et al., “Influence of spark plasma sintering temperature and hydroxyapatite nanoparticles on properties of HA based functionally graded materials for bone prosthesis,” Ceramics International, vol. 48, no. 10, pp. 14481–14490, May 2022, doi: 10.1016/J.CERAMINT.2022.01.341.
- [24] Ö. Albayrak, M. Uğurlu, M. Üniversitesi, M. Fakültesi, M. M. Bölümü, and T. Mersin, “Bor katkılı hidroksiapatit üretimi ve karakterizasyonu: Bor oranı ve sinterleme sıcaklığının yapı ve mekanik özellikler üzerindeki etkisi,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 31, no. 3, pp. 749–761, 2016, doi: 10.17341/gummfd.59636.
- [21] G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, “Biomedical Implants: Corrosion and its Prevention - A Review,” Recent Patents on Corrosion Science, vol. 2, no. 1, pp. 40–54, May 2010, doi: 10.2174/1877610801002010040.
- [22] A. Rezaei, R. B. Golenji, F. Alipour, M. M. Hadavi, and I. Mobasherpour, “Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants,” Ceramics International, vol. 46, no. 16, pp. 25374–25381, Nov. 2020, doi: 10.1016/J.CERAMINT.2020.07.005.
- [23] A. Röttger et al., “Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices,” International Journal of Advanced Manufacturing Technology, vol. 108, no. 3, pp. 769–783, May 2020, doi: 10.1007/S00170-020-05371-1/TABLES/5.
- [25] T. W. CLYNE, “METALLIC COMPOSITE MATERIALS,” Physical Metallurgy, pp. 2567–2625, Jan. 1996, doi: 10.1016/B978-044489875-3/50035-1.
- [26] M. A. Erden, “The Effect of the Sintering Temperature and Addition of Niobium and Vanadium on the Microstructure and Mechanical Properties of Microalloyed PM Steels,” Metals 2017, Vol. 7, Page 329, vol. 7, no. 9, p. 329, Aug. 2017, doi: 10.3390/MET7090329.
- [27] M. Elitas, “Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel,” Materialpruefung/Materials Testing, vol. 63, no. 2, pp. 124–130, Feb. 2021, doi: 10.1515/MT-2020-0019/HTML.
- [28] M. A. Erden and M. Akgün, “Effect of Mo addition on microstructure, mechanical and machinability properties of Cr-PM steels:,” https://doi.org/10.1177/09544062211058600, vol. 236, no. 10, pp. 5455–5467, Dec. 2021, doi: 10.1177/09544062211058600.
- [29] A. S. Guldibi and H. Demir, “Aging Effect on Microstructure and Machinability of Corrax Steel,” Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5168–5174, Feb. 2020, doi: 10.48084/ETASR.3265.
- [30] D. Özdemirler, S. Gündüz, M. A. Erden, “Influence of NbC Addition on the Sintering Behaviour of Medium Carbon PM Steels,” Metals 2017, Vol. 7, Page 121, vol. 7, no. 4, p. 121, Apr. 2017, doi: 10.3390/MET7040121.
- [31] D. Özdemirler, S. Gündüz, M. A. Erden, , H. Karabulut, M. Türkmen “Microstructure and mechanical properties of Nb added PM steels sintered at defferent temperatures, 16(1), (87-91) AKU,” J. Sci. Eng, vol. 16, pp. 87–91, 2016.
- [32] S. Gündüz, M. A. Erden, H. Karabulut, and M. Türkmen, “Effect of the addition of niobium and aluminium on the microstructures and mechanical properties of micro-alloyed PM steels,” Materiali in tehnologije, vol. 50, no. 5, pp. 641–648, Oct. 2016, doi: 10.17222/mit.2015.248.
- [33] A. M. Guma, S. Gündüz, M. A. Erden, D. Taştemur, “Dynamic Strain Aging Behaviour in AISI 316L Austenitic Stainless Steel under As-Received and As-Welded Conditions”. Metals, vol. 7, no. 9, pp. 362, 2017.
- [34] A. N. Tanrıverdi, Y. Akgül, M. A. Erden (2022). “A novel approach on productıon of carbon steels usıng graphene vıa powder metallurgy”, Canadian Metallurgical Quarterly, vol. 61, no. 1, pp 85-93, 2022.
- [35] M. A. Erden, M. E. Korkmaz, N. Yaşar, B. Ayvacı, R. K N. Sworna, M. Mia, "Investigation of Microstructure, Mechanical and Machinability Properties of Mo Added Steel Produced by Powder Metallurgy Method", The International Journal of Advanced Manufacturing Technology, 114, 2811–2827, 2021.
- [36] H. Karabulut , M.A. Erden, , K. Karacif, S. Gündüz, “Investigation of the effects of SiC reinforcement ratio in iron-based composite materials on corrosion properties”. Journal of the Southern African
Institute of Mining and Metallurgy, vol. 122, no. 6, pp. 317-322, 2022.
- [37] Mehmet Akif Erden, Fatih Aydın, “Wear and mechanical properties of carburized AISI 8620 steel produced by powder metallurgy”. International Journal of Minerals, Metallurgy and Materials, vol. 28, no. 3, pp. 430-439, 2021.
- [38], M.A.M. Ahssı, M.A. Erden, M. Acarer, H. Çuğ, “The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium–Vanadium Microalloyed Powder Metallurgy Steels”. Materials, vol. 13, pp. 4021, 2020.
- [39] M. A. Erden, “Effect of pressing pressure on microstructure and mechanical properties of non-alloyed steels produced by powder metallurgy method”. Omer Halisdemir University Journal of Engineering Sciences, vol. 6, no. 1, pp. 257-264, 2017.
- [40] Türkmen Mustafa, Karabulut Hasan, Erden Mehmet Akif, Gündüz Süleyman “Effect of TiN addıtıon on the mıcrostructure and mechanıcal propertıes of pm steels”. e-Journal of New World Sciences Academy, vol. 12, no. 4, pp. 178-184, 2017.
- [41] S. Gündüz, H. Karabulut, M. A. Erden, M. Türkmen. “Microstructural Effects on Fatigue Behaviour of a Forged Medium Carbon Microalloyed Steel”. Materials Testing, vol. 55, no. 11-12, pp. 865-870, 2013.
- [42] B. Güney,Y. Dilay , “Determination of abrasion resistance of Fe28Cr5C1Mn coating applied to 30MnB5 boron alloy cultivator blades via electric arc spray”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , 2022.
- [43] B. Güney, “Microstructure analysis of welding fume of low and medium carbon steels”, Revista de Metalurgia , 2021.
- [44] B. Kurt, L. Özdoğan, B. Güney, Ö. S. Bölükbaşı, A. Günen, “Characterization and wear behavior of TiBC coatings formed by thermo-reactive diffusion technique on AISI D6 steel”, Surface and Coatings Technology , 2020.
- [45] Mehmet Akif Erden, M. Furkan Taslıyan, Yasin Akgul. “Effect of TiC, TiN, and TiCN on Microstructural, Mechanical and Tribological Properties of PM Steels”, Science of Sintering, vol. 53, no. 4, pp. 497-508, 2021.