Robust Adaptive Control Based on Incremental Nonlinear Dynamic Inversion for a Quadrotor in Presence of Partial Actuator Fault
Yıl 2024,
, 1 - 21, 30.04.2024
Karim Ahmadi Dastgerdi
,
Davood Asadi
,
Seyed Yaser Nabavi Chashmi
,
Önder Tutsoy
Öz
This paper presents a novel nonlinear robust adaptive trajectory tracking control architecture for stabilizing and controlling a quadrotor in the presence of actuator partial faults. The proposed control strategy utilizes an Incremental Nonlinear Dynamic Inversion (INDI) algorithm as the baseline controller in the inner loop and augments a nonlinear model reference adaptive controller in the outer loop to ensure robustness against unmodeled faults. Additionally, a modified PID controller is introduced in the most outer-loop to track the desired path. The effects of actuator faults are modeled by considering sudden variations in motor thrust and torques. To enhance the control algorithm's robustness, a projection operator is employed in the robust adaptive structure. Comparative performance evaluations with a previous successful algorithm implemented on a quadrotor model demonstrate that the proposed controller achieves full controllability of the faulty quadrotor in pitch, roll, and yaw channels in the presence of actuator partial faults up to 50%.
Destekleyen Kurum
Scientific and Technological Research Council of Turkey (TÜBİTAK)
Kaynakça
- [1] Turan V., Avşar E., Asadi D., Aydin E.A., "Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situation”, Turkish Journal Engineering 5 (2021): 193-200.
- [2] Asadi D., “Partial engine fault detection and control of a quadrotor considering model uncertainty”, Turkish Journal Engineering 6 (2021):106-117.
- [3] Nabavi Y., Asadi D., Ahmadi K., “Image-based UAV position and velocity estimationsing a monocular camera”, Control Engineering Practice 134 (2023).
- [4] Asadi D., Sabzehparvar M., Atkins E.M., Talebi H.A., “Damaged airplane trajectory planning based on flight envelope and motion primitives”, Journal of Aircraft 51 (2014): 1740-1757.
- [5] Asadi D., Sabzehparvar M., Talebi H.A., “Damaged airplane flight envelope and stability evaluation, Aircraft Engineering and Aerospace Technology”, 85 (2013) : 186-198.
- [6] Ahmadi K., Asadi D., Pazooki F., “Nonlinear L1 adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233 (2019) : 341-353.
- [7] Asadi D., Ahmadi K., “Nonlinear robust adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) : 2076-2088.
- [8] Asadi D., Bagherzadeh S.A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232 (2017): 1405–1420.
- [9] Alwi H., Edwards C., “Fault-tolerant control of an octorotor using LPV based sliding mode control allocation”, American Control Conference, Washington, DC, USA, (2013) : 6505-6510.
- [10] Navabi M., Davoodi A., Mirzaei H., “Trajectory tracking of an under-actuated quadcopter using Lyapunov-based optimum adaptive controller”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 236(1) (2021) : 202-215.
- [11] Ahmadi K., Asadi D., Nabavi Y., Tutsoy O., “Modified adaptive discrete-time incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults”, Mechanical Systems and Signal Processing 188 (2023) : 109989.
- [12] Asadi D., Ahmadi K., Nabavi Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault”, Int. J. Aeronaut. Sp. Sci. 23 (2022) : 129-142.
- [13] Gao Z., Cecati C., Ding S.X., “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”, IEEE Trans. Ind. Electron. 62 (2015) : 3757-3767.
- [14] Ahmadi K., Asadi D., Merheb A., Nabavi Y., Tutsoy O., “Active fault-tolerant control of quadrotor UAVs with nonlinear observer-based sliding mode control validated through hardware in the loop experiments”, Control Engineering Practice, 137 (2023).
- [15] Barghandan S., Badamchizadeh M.A., Jahed-Motlagh M.R., “Improved adaptive fuzzy sliding mode controller for robust fault-tolerant of a Quadrotor”, Int. J. Control. Autom. Syst. 15 (2017): 427-441.
- [16] Lanzon A., Freddi A., Longhi S., “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure”, J. Guid. Control. Dyn. 37 (2014): 580-591.
- [17] Khaneghaei M., Asadi D., Tutsoy O., “Software in the Loop (SIL) Simulation for an Autonomous Multirotor Flight Planning and Landing with ROS and Gazebo”, 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Istanbul, Turkiye (2023): 1-10.
- [18] Besnard L., Shtessel Y.B., Landrum B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer”, J. Franklin Inst. 349 (2012) : 658-684.
- [19] Quan Q., “Introduction to multicopter design and control”, Springer, (2017).
- [20] Haghighi H., Delahaye D., Asadi D., “Performance-based emergency landing trajectory planning applying meta-heuristic and Dubins paths, Applied Soft Computing”, 117 (2022) : 108453.
- [21] Sun S., Wang X., Chu Q., Visser C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss of Two Opposing Rotors”, IEEE Trans. Robot. 37 (2021) : 116-130.
- [22] Sun S., Cioffi G., De Visser C., Scaramuzza D., “Autonomous Quadrotor Flight Despite Rotor Failure With Onboard Vision Sensors: Frames vs. Events”, IEEE Robot. Autom. Lett. 6(2) (2021) : 580-587.
- [23] Asadi D., “Actuator Fault Detection, Identification, and Control of a Multirotor Air Vehicle Using Residual Generation and Parameter Estimation Approaches. Int. J. Aeronaut. Space Sci. 25, 176-189 (2024).
- [24] Asadi D., Ahmadi K., Nabavi Y., Tutsoy O., “Controllability of multi-rotors under motor fault effect”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 (2021): 24-43.
- [25] Lee J., Choi H.S., Shim H., “Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method”, Int. J. Aeronaut. Sp. Sci. 17 (2016): 54-63.
- [26] Asadi, D., “Model-based Fault Detection and Identification of a Quadrotor with Rotor Fault”, Int. J. Aeronaut. Space Sci. 23 (2022): 916-928. 10.1007/s42405-022-00494-z.
- [27] Merheb A., Noura H., Bateman F., “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics. 22 (2017) : 961-971.
- [28] Lee D., “A Linear Acceleration Control for Precise Trajectory Tracking Flights of a Quadrotor UAV Under High-wind Environments”, Int. J. Aeronaut. Sp. Sci. 22 (2021) : 898-910.
- [29] Bouabdallah S., Siegwart R., “Full control of a quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, (2007) :153-158.
- [30] Tutsoy O., Asadi D., Ahmadi K., Nabavi Y., “Robust Reduced-Order Thau Observer With the Adaptive Fault Estimator for the Unmanned Air Vehicles”, in IEEE Transactions on Vehicular Technology, 72 (2023) : 1601-1610.
- [31] Ermeydan A., Kiyak E., “Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor”, Aircr. Eng. Aerosp. Technol. 89 (2017) : 468-476.
Yıl 2024,
, 1 - 21, 30.04.2024
Karim Ahmadi Dastgerdi
,
Davood Asadi
,
Seyed Yaser Nabavi Chashmi
,
Önder Tutsoy
Kaynakça
- [1] Turan V., Avşar E., Asadi D., Aydin E.A., "Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situation”, Turkish Journal Engineering 5 (2021): 193-200.
- [2] Asadi D., “Partial engine fault detection and control of a quadrotor considering model uncertainty”, Turkish Journal Engineering 6 (2021):106-117.
- [3] Nabavi Y., Asadi D., Ahmadi K., “Image-based UAV position and velocity estimationsing a monocular camera”, Control Engineering Practice 134 (2023).
- [4] Asadi D., Sabzehparvar M., Atkins E.M., Talebi H.A., “Damaged airplane trajectory planning based on flight envelope and motion primitives”, Journal of Aircraft 51 (2014): 1740-1757.
- [5] Asadi D., Sabzehparvar M., Talebi H.A., “Damaged airplane flight envelope and stability evaluation, Aircraft Engineering and Aerospace Technology”, 85 (2013) : 186-198.
- [6] Ahmadi K., Asadi D., Pazooki F., “Nonlinear L1 adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233 (2019) : 341-353.
- [7] Asadi D., Ahmadi K., “Nonlinear robust adaptive control of an airplane with structural damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 234 (2020) : 2076-2088.
- [8] Asadi D., Bagherzadeh S.A., “Nonlinear adaptive sliding mode tracking control of an airplane with wing damage”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232 (2017): 1405–1420.
- [9] Alwi H., Edwards C., “Fault-tolerant control of an octorotor using LPV based sliding mode control allocation”, American Control Conference, Washington, DC, USA, (2013) : 6505-6510.
- [10] Navabi M., Davoodi A., Mirzaei H., “Trajectory tracking of an under-actuated quadcopter using Lyapunov-based optimum adaptive controller”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 236(1) (2021) : 202-215.
- [11] Ahmadi K., Asadi D., Nabavi Y., Tutsoy O., “Modified adaptive discrete-time incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults”, Mechanical Systems and Signal Processing 188 (2023) : 109989.
- [12] Asadi D., Ahmadi K., Nabavi Y., “Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault”, Int. J. Aeronaut. Sp. Sci. 23 (2022) : 129-142.
- [13] Gao Z., Cecati C., Ding S.X., “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”, IEEE Trans. Ind. Electron. 62 (2015) : 3757-3767.
- [14] Ahmadi K., Asadi D., Merheb A., Nabavi Y., Tutsoy O., “Active fault-tolerant control of quadrotor UAVs with nonlinear observer-based sliding mode control validated through hardware in the loop experiments”, Control Engineering Practice, 137 (2023).
- [15] Barghandan S., Badamchizadeh M.A., Jahed-Motlagh M.R., “Improved adaptive fuzzy sliding mode controller for robust fault-tolerant of a Quadrotor”, Int. J. Control. Autom. Syst. 15 (2017): 427-441.
- [16] Lanzon A., Freddi A., Longhi S., “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure”, J. Guid. Control. Dyn. 37 (2014): 580-591.
- [17] Khaneghaei M., Asadi D., Tutsoy O., “Software in the Loop (SIL) Simulation for an Autonomous Multirotor Flight Planning and Landing with ROS and Gazebo”, 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Istanbul, Turkiye (2023): 1-10.
- [18] Besnard L., Shtessel Y.B., Landrum B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer”, J. Franklin Inst. 349 (2012) : 658-684.
- [19] Quan Q., “Introduction to multicopter design and control”, Springer, (2017).
- [20] Haghighi H., Delahaye D., Asadi D., “Performance-based emergency landing trajectory planning applying meta-heuristic and Dubins paths, Applied Soft Computing”, 117 (2022) : 108453.
- [21] Sun S., Wang X., Chu Q., Visser C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss of Two Opposing Rotors”, IEEE Trans. Robot. 37 (2021) : 116-130.
- [22] Sun S., Cioffi G., De Visser C., Scaramuzza D., “Autonomous Quadrotor Flight Despite Rotor Failure With Onboard Vision Sensors: Frames vs. Events”, IEEE Robot. Autom. Lett. 6(2) (2021) : 580-587.
- [23] Asadi D., “Actuator Fault Detection, Identification, and Control of a Multirotor Air Vehicle Using Residual Generation and Parameter Estimation Approaches. Int. J. Aeronaut. Space Sci. 25, 176-189 (2024).
- [24] Asadi D., Ahmadi K., Nabavi Y., Tutsoy O., “Controllability of multi-rotors under motor fault effect”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 4 (2021): 24-43.
- [25] Lee J., Choi H.S., Shim H., “Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method”, Int. J. Aeronaut. Sp. Sci. 17 (2016): 54-63.
- [26] Asadi, D., “Model-based Fault Detection and Identification of a Quadrotor with Rotor Fault”, Int. J. Aeronaut. Space Sci. 23 (2022): 916-928. 10.1007/s42405-022-00494-z.
- [27] Merheb A., Noura H., Bateman F., “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics. 22 (2017) : 961-971.
- [28] Lee D., “A Linear Acceleration Control for Precise Trajectory Tracking Flights of a Quadrotor UAV Under High-wind Environments”, Int. J. Aeronaut. Sp. Sci. 22 (2021) : 898-910.
- [29] Bouabdallah S., Siegwart R., “Full control of a quadrotor”, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, (2007) :153-158.
- [30] Tutsoy O., Asadi D., Ahmadi K., Nabavi Y., “Robust Reduced-Order Thau Observer With the Adaptive Fault Estimator for the Unmanned Air Vehicles”, in IEEE Transactions on Vehicular Technology, 72 (2023) : 1601-1610.
- [31] Ermeydan A., Kiyak E., “Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor”, Aircr. Eng. Aerosp. Technol. 89 (2017) : 468-476.