Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Öz

Kaynakça

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.

On Hybrid Curves

Yıl 2023, , 119 - 130, 31.12.2023
https://doi.org/10.30931/jetas.1338660

Öz

In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,<>) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret frame formulae of a non-lightlike hybrid curve in R^4 and an illustrative example for all theorems of the paper with MATLAB 2016a codes.

Kaynakça

  • [1] Bharathi, K., Nagaraj, M., "Quaternion valued function of a real variable Serret–Frenet formulae", Indian J. Pure Appl. Math. 16 (1985) : 741–756.
  • [2] Coken, A.C., Tuna, A., "On the quaternionic inclined curves in the semi-Euclidean space ", Appl. Math. Comput. 155 (2004) : 373-389.
  • [3] Dağdeviren, A., Yüce, S., "Dual quaternions and dual quaternionic curves", Filomat 33(4) (2019) : 1037–1046.
  • [4] Ohashi, M., "G 2-Congruence theorem for curves in purely imaginary octonions and its application", Geom Dedicata 163 (2013) : 1–17.
  • [5] Özdemir, M., "Introduction to Hybrid Numbers", Adv. Appl. Clifford Algebras 28(11) (2018).
  • [6] Özdemir, M., "Finding Roots of a 2×2 real matrix using De Moivre’s formula", Advances in Applied Clifford Algebras 29(2) (2019).
  • [7] Öztürk, İ., Özdemir, M., "Similarity of hybrid numbers", Mathematical Methods in Applied Sciences 43(15) (2020): 8867-8881.
  • [8] Akbıyık, M., S. Yamaç Akbıyık, E. Karaca, F. Yılmaz, "De Moivre’s and Euler Formulas for matrices of hybrid numbers", Axioms 2021, 10, 213.
  • [9] Szynal-Liana, A., "The Horadam Hybrid Numbers", Discussiones Mathematicae General Algebra and Applications 38 (2018) : 91–98.
  • [10] Kızılateş, C., "A new generalization of Fibonacci hybrid and Lucas hybrid numbers", Chaos, Solitons & Fractals 130 (2020) : 109449.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Research Article
Yazarlar

Mücahit Akbıyık 0000-0002-0256-1472

Erken Görünüm Tarihi 30 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akbıyık, M. (2023). On Hybrid Curves. Journal of Engineering Technology and Applied Sciences, 8(3), 119-130. https://doi.org/10.30931/jetas.1338660
AMA Akbıyık M. On Hybrid Curves. JETAS. Aralık 2023;8(3):119-130. doi:10.30931/jetas.1338660
Chicago Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8, sy. 3 (Aralık 2023): 119-30. https://doi.org/10.30931/jetas.1338660.
EndNote Akbıyık M (01 Aralık 2023) On Hybrid Curves. Journal of Engineering Technology and Applied Sciences 8 3 119–130.
IEEE M. Akbıyık, “On Hybrid Curves”, JETAS, c. 8, sy. 3, ss. 119–130, 2023, doi: 10.30931/jetas.1338660.
ISNAD Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences 8/3 (Aralık 2023), 119-130. https://doi.org/10.30931/jetas.1338660.
JAMA Akbıyık M. On Hybrid Curves. JETAS. 2023;8:119–130.
MLA Akbıyık, Mücahit. “On Hybrid Curves”. Journal of Engineering Technology and Applied Sciences, c. 8, sy. 3, 2023, ss. 119-30, doi:10.30931/jetas.1338660.
Vancouver Akbıyık M. On Hybrid Curves. JETAS. 2023;8(3):119-30.