In this paper we prove the functional inequality $f(x)^{f(x)}\leq g(x)^{g(x)}$ for positive real functions $f$ and $g$ satisfying natural conditions and apply it to derive
inequalities between some of the elementary functions and to prove monotonocity of certain sequences of real numbers.
Arithmetic-geometric means inequality Young inequality Extremum values Functional inequalities Elementary functions Monotone sequences
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Research Article |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2017 |
Yayımlandığı Sayı | Yıl 2017 |