In this paper we prove the functional inequality $f(x)^{f(x)}\leq g(x)^{g(x)}$ for positive real functions $f$ and $g$ satisfying natural conditions and apply it to derive
inequalities between some of the elementary functions and to prove monotonocity of certain sequences of real numbers.
Arithmetic-geometric means inequality Young inequality Extremum values Functional inequalities Elementary functions Monotone sequences
| Birincil Dil | İngilizce |
|---|---|
| Konular | Matematik |
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Yayımlanma Tarihi | 30 Nisan 2017 |
| Yayımlandığı Sayı | Yıl 2017 Cilt: 2 Sayı: 1 |