Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, , 43 - 56, 30.04.2017
https://doi.org/10.30931/jetas.305246

Öz

Kaynakça

  • [1] B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dyesensitised colloidal TiO2 films”, Nature, 353 (1991), 737-740.
  • [2] M. Gratzel, “Dye-sensitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003), 145-153.
  • [3] R.K. Kanaparthi, J. Kandhadi, L. Giribabu “Metal-free organic dyes for dye-sensitized solar cells” Tetrahedron, 68 (2012), 8383-8393
  • [4] G. Wu, F. Kong, J. Li, W. Chen, X. Fang, C. Zhang, Q. Chen, X. Zhang, S. Dai, “Influence of different acceptor groups in julolidine-based organic dye-sensitized solar cells”, Dyes and Pigments, 99 (2013), 653-660.
  • [5] A. Kay, M. Graetzel, “Photosensitisation of TiO2 solarcells with chlorophyll derivatives and related natural porphyrins” J.Phys. Chem., 97(23) (1993).6272-6277.
  • [6] H. Tributsch, "Dye sensitization solar cells: a critical assessment of the learning curve", Coordination Chemistry Reviews, 248(13) (2004), 1511-1530.
  • [7] L. Wang, M. Liang, Y. Zhang, F. Cheng, X. Wang, Z. Sun, S. Xue, “Influence of donor and bridge structure in D-A-π-A indoline dyes on the photovoltaic properties of dye-sensitized solar cells employing iodine/cobalt electrolyte”, Dyes and Pigments, 101 (2014), 270-279.
  • [8] Hwang S, Lee J.H., Park C., Lee H., Kim C., Park C., Lee M.H., Lee W., Park J., Kim K., Park N.G., Kim C., “A highly efficient organic sensitizer for dye-sensitized solar cells” Chem.Commun., 14(46) (2007) 4887-4889.
  • [9] P.C. Kao, S.Y. Chu, S.J. Liu, Z.X. You, C.A.Chuang, “Improved Performance of Organic Light-Emitting Diodes Using a Metal-Phthalocyanine Hole-Injection Layer”, Journal of the Electrochemical Society, 153(6) (2006) 122-126.
  • [10] M. Yanagisawa, F. Korodi, J. Bergquist, A. Holmberg, A. Hagfeldt, B. Akermark, L.C.Sun, “Synthesis of Phthalocyanines with two Carboxylic Acid Groups and Their Utilization in Solar Cells Based on Nanostructured TiO2”, Journal of Porphyrins and Phthalocyanines, 8(10) (2004) 1228-1235.
  • [11] S. Kim, D. Kim, H. Choi, M.S. Kang, K. Song, S. O. Kang and J. Ko, “Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering”, Chem. Commun., (2008) 4951-4953.
  • [12] Z. Ji, K. Yu-He, L. Hai-Bin, G. Yun, W. Yong, S. Zhong-Min, “How to design proper p-spacer order of the D-π-A dyes for DSSCs, A density functional response”, Dyes and Pigments, 95(2012) 313-321.
  • [13] Y. Wu, W. Zhu “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances” Chem Soc Rev, 42 (2013) 2039-2058.
  • [14] W. Ling, S. Ping, C. Zhencai, L. Xinping, H. Yuanshuai, L. Chunyan, C. Pan, Z. Bin, TT. Songting, “Effects of the acceptors in triphenylamine-based D-π-A-π-A dyes on photophysical, electrochemical, and photovoltaic properties”, Journal of Power Sources, 246 (2014) 831-839.
  • [15] J.L. Song, P. Amaladass, S.H. Wen, K.K. Pasunooti, A. Li, Y.L. Yu, et al. “Aryl/hetero-arylethyne bridged dyes: the effect of planar π-bridge on the performance of dye sensitized solar cells” New J Chem, 35 (2011) 127-136.
  • [16] S. Ping, L. Xinping, J. Shenghui, W. Ling, Y. Ling, Y. Dandan, Z. Bin, T. Songting, “Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived π-conjugated bridge”, Dyes and Pigments, 92 (2012) 1042-1051.
  • [17] A. Erdogmus, Nyokong T., “Synthesis of zinc phthalocyanine derivatives with improved photophysicochemical properties in aqueous media”, Journal of Moleculer Structure, 977 (2010) 26-38.
  • [18] A. Erdogmus, Nyokong T., “New soluble methylendioxy-phenoxy-substituted zinc phthalocyanine derivatives: Synthesis, photophysical and photochemical studies” Polyhedron, 28(14) (2009) 2855-2862.
  • [19] L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules” J. Phys. Chem. B 111 (2006) 358-362.
  • [20] G.P. Smestad, “Education and solar conversion: demonstrating electron transfer” Solar Energy Materials and Solar Cells 55 (1998) 157-168.
  • [21] J.B. Yuan, M.L. Louis, M. Gong, Tetrahedron Letters 45 (2004) 6361
  • [22] Z. Ying et al., “Controlled growth of ZnPc thin films for photovoltaic appplications” Physics Procedia 14 (2011) 221-252.
  • [23] J. G. van Dijken, M. D. Fleischauer, and M. J. Brett, “Solvent effects on ZnPc thin films and their role in fabrication of nanostructured organic solar cells,” Organic Electronics, 12(12) (2011) 2111-2119.
  • [24] R. Zhou, F. Josse, W. Göpel, Z.Z Öztürk and Ö. Bekaroğlu, “Phthalocyanines as sensitive materials for chemical sensors” Appl. Organometallic Chem. 10(8) (1996) 557-577.
  • [25] M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, “New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells”, J., Phys. Chem. C.111(2007) 4465-4472.
  • [26] A. Erdogmus, M. Sharon, L. Christian, T. Nyokong, "Photophysical properties of newly synthesized fluorinated zinc phthalocyanines in the presence of CdTe quantum dots and the accompanying energy transfer processes", Journal of Photochemistry and Photobiology A: Chemistry, 210 (2010) 200-208.
  • [27] A. Erdogmus, T. Nyokong, “Synthesis, photophysical and photochemical properties of novel soluble tetra[4-(thiophen-3yl)-phenoxy]phthalocyaninato zinc(II) and Ti(IV)O complexes” Inorganica Chimica Acta, 362 (2009) 4875-4883.

The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties

Yıl 2017, , 43 - 56, 30.04.2017
https://doi.org/10.30931/jetas.305246

Öz

We
report on photovoltaic cell devices based on metallo phthalocyanine structures,
such as zinc and nickel phthalocyanines (ZnPc and NiPc), which are formed by
4-(Diphenylamino) benzaldehyde containing substituents D-π-D features were
synthesized and used for dye-sensitized solar cells (DSSCs). These novel
compounds were characterized by using FTIR, UV-vis, MS spectroscopic data and
elemental analysis. Furthermore, the relationship between ZnPc and NiPc
morphology and photovoltaic properties are discussed. Among ZnPc and NiPc, the
ZnPc-DSSC exhibited significantly excellent photovoltaic activities under radiation
of visible light. In this case, photovoltaic cell efficiencies are up to 1.139%
for ZnPc, compared to an average of 0.427% for NiPc. Moreover, the ZnPc device
prepared at room temperature exhibits relatively higher photovoltaic cell
efficiency (PCE) because of the significant improvements in short-circuit
photocurrent (Jsc) and open-circuit voltage (Voc). However, a DSSC assembled with NiPc material due to metallic behavior of nickel in the structures
electrochemical reactions run at the interface between NiPc and back contact,
which causes electrochemical corrosion of metal. Thus NiPc-DSSC shows lower
photovoltaic properties than ZnPc-DSSC.

Kaynakça

  • [1] B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dyesensitised colloidal TiO2 films”, Nature, 353 (1991), 737-740.
  • [2] M. Gratzel, “Dye-sensitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003), 145-153.
  • [3] R.K. Kanaparthi, J. Kandhadi, L. Giribabu “Metal-free organic dyes for dye-sensitized solar cells” Tetrahedron, 68 (2012), 8383-8393
  • [4] G. Wu, F. Kong, J. Li, W. Chen, X. Fang, C. Zhang, Q. Chen, X. Zhang, S. Dai, “Influence of different acceptor groups in julolidine-based organic dye-sensitized solar cells”, Dyes and Pigments, 99 (2013), 653-660.
  • [5] A. Kay, M. Graetzel, “Photosensitisation of TiO2 solarcells with chlorophyll derivatives and related natural porphyrins” J.Phys. Chem., 97(23) (1993).6272-6277.
  • [6] H. Tributsch, "Dye sensitization solar cells: a critical assessment of the learning curve", Coordination Chemistry Reviews, 248(13) (2004), 1511-1530.
  • [7] L. Wang, M. Liang, Y. Zhang, F. Cheng, X. Wang, Z. Sun, S. Xue, “Influence of donor and bridge structure in D-A-π-A indoline dyes on the photovoltaic properties of dye-sensitized solar cells employing iodine/cobalt electrolyte”, Dyes and Pigments, 101 (2014), 270-279.
  • [8] Hwang S, Lee J.H., Park C., Lee H., Kim C., Park C., Lee M.H., Lee W., Park J., Kim K., Park N.G., Kim C., “A highly efficient organic sensitizer for dye-sensitized solar cells” Chem.Commun., 14(46) (2007) 4887-4889.
  • [9] P.C. Kao, S.Y. Chu, S.J. Liu, Z.X. You, C.A.Chuang, “Improved Performance of Organic Light-Emitting Diodes Using a Metal-Phthalocyanine Hole-Injection Layer”, Journal of the Electrochemical Society, 153(6) (2006) 122-126.
  • [10] M. Yanagisawa, F. Korodi, J. Bergquist, A. Holmberg, A. Hagfeldt, B. Akermark, L.C.Sun, “Synthesis of Phthalocyanines with two Carboxylic Acid Groups and Their Utilization in Solar Cells Based on Nanostructured TiO2”, Journal of Porphyrins and Phthalocyanines, 8(10) (2004) 1228-1235.
  • [11] S. Kim, D. Kim, H. Choi, M.S. Kang, K. Song, S. O. Kang and J. Ko, “Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering”, Chem. Commun., (2008) 4951-4953.
  • [12] Z. Ji, K. Yu-He, L. Hai-Bin, G. Yun, W. Yong, S. Zhong-Min, “How to design proper p-spacer order of the D-π-A dyes for DSSCs, A density functional response”, Dyes and Pigments, 95(2012) 313-321.
  • [13] Y. Wu, W. Zhu “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances” Chem Soc Rev, 42 (2013) 2039-2058.
  • [14] W. Ling, S. Ping, C. Zhencai, L. Xinping, H. Yuanshuai, L. Chunyan, C. Pan, Z. Bin, TT. Songting, “Effects of the acceptors in triphenylamine-based D-π-A-π-A dyes on photophysical, electrochemical, and photovoltaic properties”, Journal of Power Sources, 246 (2014) 831-839.
  • [15] J.L. Song, P. Amaladass, S.H. Wen, K.K. Pasunooti, A. Li, Y.L. Yu, et al. “Aryl/hetero-arylethyne bridged dyes: the effect of planar π-bridge on the performance of dye sensitized solar cells” New J Chem, 35 (2011) 127-136.
  • [16] S. Ping, L. Xinping, J. Shenghui, W. Ling, Y. Ling, Y. Dandan, Z. Bin, T. Songting, “Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived π-conjugated bridge”, Dyes and Pigments, 92 (2012) 1042-1051.
  • [17] A. Erdogmus, Nyokong T., “Synthesis of zinc phthalocyanine derivatives with improved photophysicochemical properties in aqueous media”, Journal of Moleculer Structure, 977 (2010) 26-38.
  • [18] A. Erdogmus, Nyokong T., “New soluble methylendioxy-phenoxy-substituted zinc phthalocyanine derivatives: Synthesis, photophysical and photochemical studies” Polyhedron, 28(14) (2009) 2855-2862.
  • [19] L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules” J. Phys. Chem. B 111 (2006) 358-362.
  • [20] G.P. Smestad, “Education and solar conversion: demonstrating electron transfer” Solar Energy Materials and Solar Cells 55 (1998) 157-168.
  • [21] J.B. Yuan, M.L. Louis, M. Gong, Tetrahedron Letters 45 (2004) 6361
  • [22] Z. Ying et al., “Controlled growth of ZnPc thin films for photovoltaic appplications” Physics Procedia 14 (2011) 221-252.
  • [23] J. G. van Dijken, M. D. Fleischauer, and M. J. Brett, “Solvent effects on ZnPc thin films and their role in fabrication of nanostructured organic solar cells,” Organic Electronics, 12(12) (2011) 2111-2119.
  • [24] R. Zhou, F. Josse, W. Göpel, Z.Z Öztürk and Ö. Bekaroğlu, “Phthalocyanines as sensitive materials for chemical sensors” Appl. Organometallic Chem. 10(8) (1996) 557-577.
  • [25] M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, “New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells”, J., Phys. Chem. C.111(2007) 4465-4472.
  • [26] A. Erdogmus, M. Sharon, L. Christian, T. Nyokong, "Photophysical properties of newly synthesized fluorinated zinc phthalocyanines in the presence of CdTe quantum dots and the accompanying energy transfer processes", Journal of Photochemistry and Photobiology A: Chemistry, 210 (2010) 200-208.
  • [27] A. Erdogmus, T. Nyokong, “Synthesis, photophysical and photochemical properties of novel soluble tetra[4-(thiophen-3yl)-phenoxy]phthalocyaninato zinc(II) and Ti(IV)O complexes” Inorganica Chimica Acta, 362 (2009) 4875-4883.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Article
Yazarlar

İbrahim Erden

Kaan Çaktı Bu kişi benim

Fatma Aytan Kılıçarslan

Yayımlanma Tarihi 30 Nisan 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Erden, İ., Çaktı, K., & Aytan Kılıçarslan, F. (2017). The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties. Journal of Engineering Technology and Applied Sciences, 2(1), 43-56. https://doi.org/10.30931/jetas.305246
AMA Erden İ, Çaktı K, Aytan Kılıçarslan F. The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties. JETAS. Nisan 2017;2(1):43-56. doi:10.30931/jetas.305246
Chicago Erden, İbrahim, Kaan Çaktı, ve Fatma Aytan Kılıçarslan. “The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties”. Journal of Engineering Technology and Applied Sciences 2, sy. 1 (Nisan 2017): 43-56. https://doi.org/10.30931/jetas.305246.
EndNote Erden İ, Çaktı K, Aytan Kılıçarslan F (01 Nisan 2017) The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties. Journal of Engineering Technology and Applied Sciences 2 1 43–56.
IEEE İ. Erden, K. Çaktı, ve F. Aytan Kılıçarslan, “The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties”, JETAS, c. 2, sy. 1, ss. 43–56, 2017, doi: 10.30931/jetas.305246.
ISNAD Erden, İbrahim vd. “The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties”. Journal of Engineering Technology and Applied Sciences 2/1 (Nisan 2017), 43-56. https://doi.org/10.30931/jetas.305246.
JAMA Erden İ, Çaktı K, Aytan Kılıçarslan F. The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties. JETAS. 2017;2:43–56.
MLA Erden, İbrahim vd. “The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties”. Journal of Engineering Technology and Applied Sciences, c. 2, sy. 1, 2017, ss. 43-56, doi:10.30931/jetas.305246.
Vancouver Erden İ, Çaktı K, Aytan Kılıçarslan F. The Synthesis of D-π-D Derivate Phthalocyanines for Dye-Sensitized Solar Cell, Investigation of Spectroscopic and Electrical Properties. JETAS. 2017;2(1):43-56.